E nantiospecific synthesis of (-)-5-epi-shikimic acid and (-)-shikimic

 acidShende J iang, ${ }^{\text {a }}$ K evin J. M cC ullough, ${ }^{\text {b }}$ B oualem M ekki, ${ }^{\text {a }}$ G urdial Singh ${ }^{\text {a }}$ and R ichard H. W ightman ${ }^{\text {b }}$
a D epartment of Chemistry, U niversity of Sunderland, Sunderland, UK SR 1 3SD
${ }^{\text {b }}$ D epartment of Chemistry, H eriot-W att U niversity, Riccarton, E dinburgh, UK EH 14 4A S

Abstract

D iastereoselective reaction of 2,3-0 -isopropylidene-d-ribose with allylmagnesium chloride gave a:1 mixture of triols 4 and 5, which were then converted to nitrones 8 and 9 . Intramolecular nitrone cycloaddition gave the isoxazolidines 10 and 11, which on acetylation gave the corresponding acetates 12 and 13 which were separated by repeated crystallisation. The major adduct 12 was converted to (-)-5-epishikimic acid 2. Reaction of the ribonolactone derivative 20 with allylmagnesium chloride gave the hemiacetal 21. Reduction of compound 21 with DIBAL afforded exclusively the diol 22, which was desilylated to give the triol 5 . Similar chemistry to that employed for the synthesis of (-)-5-epi-shikimic acid 2 with the diol 5 resulted in the synthesis of (-)-shikimic acid 1.

Introduction

$(-)$-Shikimic acid $\mathbf{1}$ is a key biosynthetic intermediate that is produced from d-glucose and gives its name to the pathway by which the aromatic amino acids and a wide range of secondary metabolites are formed in microorganisms and also in the leaves and fruits of many plants. ${ }^{1}$ The important role that (-)shikimic acid 1 has in living systems was established by the pioneering work of Davis, ${ }^{2}$ Sprinson ${ }^{3}$ and G ibson. ${ }^{4}$ However the shikimate pathway is not operative in mammals and thus they have to obtain the three aromatic amino acids ($\mathrm{L}-\mathrm{Phe}, \mathrm{L}$ Tyr and $\mathrm{L}-\mathrm{Trp}$) through dietary means. The biochemical significance of this has led to much interest in the chemistry of acid $\mathbf{1}$, and following the early synthesis of natural shikimic acid (-)-1 from D -arabinose ${ }^{5 \mathrm{a}}$ a number of other reports have appeared on the conversion of sugars to compound $(-)-11^{5 b-9} \mathrm{H}$ ere we report new direct routes to both compound (-)-1 and the previously

1

2
unreported (-)-5-epi-shikimic acid 2 from d-ribose ${ }^{6}$ Central to our strategy was the intramolecular nitrone cycloaddition reaction which established the carbocyclic ring.

Results and discussion

We have previously shown that the reaction of 2,3-0-isopropyl-idene-d-ribose $\mathbf{3}$ with diallylzinc gives the d-allo-triol $\mathbf{4}$ (Scheme 1) with high diastereoselectivity, ${ }^{7}$ a result that can be rationalised by reaction either via a Felkin-A nh transition state (Fig. 1) or a cyclic chelate (Fig. 2). ${ }^{8}$ A lternatively treatment of compound $\mathbf{3}$ with an excess of allylmagnesium chloride results in the formation of a mixture of diastereoisomers $\mathbf{4}$ and $\mathbf{5}$ in the ratio 5:1, that proved difficult to separate. Cleavage of this mixture of triols 4 and $\mathbf{5}$ with sodium periodate gave the lactols 6 and $\mathbf{7}$ in quantitative yield with each compound being present as an anomeric mixture The ${ }^{13} \mathrm{C}$ chemical shifts of these anomers were correlated to the configuration of the anomeric carbon ${ }^{9}$ as the chemical shift of C-1 in the 1,2-trans-anomers

Fig. 1 Felkin-A nh transition state
$6 \boldsymbol{\beta}$ and $7 \boldsymbol{\alpha} \dagger$ was observed at 102.72 and 100.66 ppm , respectively, whilst the cis-anomers $6 \boldsymbol{\alpha}$ and $7 \boldsymbol{\beta}$ gave resonances for $\mathrm{C}-1$ at 95.65 and 96.51 ppm . The mixture of products 6 and 7 was treated with an excess of N -methylhydroxylamine hydrochloride (10 mol equiv.) in pyridine to give a mixture of nitrones 8 and 9 . We have found that the use of an excess of N-methylhydroxylamine hydrochloride was necessary for the formation of nitrone to proceed to completion. Under other conditions ($\mathrm{MeNHOH} \cdot \mathrm{HCl} 1.5 \mathrm{~mol}$ equiv., $\mathrm{NEt}_{3} 2.4 \mathrm{~mol}$ equiv., $3 \AA$ molecular sieves, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature) there was still a large amount of starting material remaining even after 4 days. Cyclisation of the nitrones proceeded smoothly in boiling toluene and afforded the isoxazolidines $\mathbf{1 0}$ and $\mathbf{1 1}$ in 91% yield for the two steps. Alternatively, the isoxazolidine $\mathbf{1 0}$ could be prepared selectively from the triol 4 that was obtained from the organozinc route. ${ }^{7}$ The minor adduct $\mathbf{1 1}$ would thus provide access to (-)-shikimic acid 1. A tempts to employ a one-pot procedure to form the isoxazolidines directly from the hemiacetals 6 and 7 ($\mathrm{MeNHOH} \cdot \mathrm{HCl} 3 \mathrm{~mol}$ equiv., $\mathrm{K}_{2} \mathrm{CO}_{3} 3 \mathrm{~mol}$ equiv., $3 \AA$ molecular sieves, in toluene at $125^{\circ} \mathrm{C}$) gave unsatisfactory results (only $\sim 30 \%$ yield). A cetylation of the hydroxy function of compounds 10 and 11 was readily accomplished and resulted in the crystalline acetate $12, \mathrm{mp} 103.5-104.5^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}-144.6$ (c 1.30, CHCl_{3}) and epimer 13.
The structures and stereochemistry of compounds $\mathbf{1 0}$ and $\mathbf{1 2}$ were initially assigned on the evidence of ${ }^{1} \mathrm{H}$ NM R couplingconstant data and nuclear Overhauser effect (NOE) experiments. In the ${ }^{1}$ H N M R spectrum of the isoxazolidine $\mathbf{1 0}$, a large coupling constant $\int_{3 a, 7 a} 9.0 \mathrm{~Hz}$ was observed, indicating an

[^0]

Fig. 2 Cyclic chelate model
almost eclipsed conformational arrangement between 7a- H and $3 \mathrm{a}-\mathrm{H}$, which was also true in the case of $3-\mathrm{H}_{\alpha}$ and $3 \mathrm{a}-\mathrm{H}\left(\mathrm{J}_{3 \mathrm{c}, 3 \mathrm{a}}\right.$ 8.3 Hz). A nother large coupling constant, J $\mathrm{J}_{4,5} 9.5 \mathrm{~Hz}$, between $4-\mathrm{H}_{\alpha}$ and $5-\mathrm{H}$ suggested a diaxial coupling. A cetylation of isoxazolidine $\mathbf{1 0}$ to give $\mathbf{1 2}$ caused a down-field shift of the $5-\mathrm{H}$ and $6-\mathrm{H}$ signals; in particular, $5-\mathrm{H}$ was shifted by $\sim 1 \mathrm{ppm}$, In this case large coupling constants were observed, $J_{3 a, 7 a} 8.9$ $\mathrm{Hz}, J_{3_{a}, 3 a} 8.4 \mathrm{~Hz}$ and $\mathrm{J}_{4,5,5} 11.5 \mathrm{~Hz}$. A dditionally, a four-bond W coupling, $\mathrm{J}_{6,4 \beta} 1.1 \mathrm{~Hz}$, was detected between $6-\mathrm{H}$ and $4-\mathrm{H}_{\beta}$. These observations led us to assign isoxazolidines $\mathbf{1 0}$ and $\mathbf{1 2}$ as having boat conformations with the CHOH or CHOAc groups bending up towards the five-membered isoxazolidine ring. Further support for this conformation came from the NOE experiments performed on compound 12, in particular the observed N OE (5\% enhancement) between $5-\mathrm{H}$ and $3-\mathrm{H}_{\beta}$.

In its $400 \mathrm{MHz}^{1} \mathrm{H} \mathrm{NMR}$ spectrum the isoxazolidine 13 showed two large coupling constants, $J_{4 \beta, 3 a} 12.6 \mathrm{~Hz}$ and $\mathrm{J}_{4 \beta, 5}$ 12.6 Hz , assuming near axial-axial couplings between $3 \mathrm{a}-\mathrm{H}$ and $4-\mathrm{H}_{\beta}$ and also between $4-\mathrm{H}_{\beta}$ and $5-\mathrm{H}$ in a boat conformation for the cyclohexane ring (Fig. 3). This assignment was supported by NOE experiments. Observed NOEs between $3-\mathrm{H}_{\beta}$ and $4-\mathrm{H}_{\beta}$, between $3-\mathrm{H}_{\beta}$ and $4-\mathrm{H}_{\alpha}$, between $4-\mathrm{H}_{\beta}$ and $7-\mathrm{H}$, and also between $4-\mathrm{H}$ and $6-\mathrm{H}$ were strongly indicative of a boat conformation in which the $\mathrm{C}-4$ group and $\mathrm{C}-7$ group are bending up towards each other (Fig. 3), which also resulted in the observed NOEs between $5-\mathrm{H}$ and $3 \mathrm{a}-\mathrm{H}$ and between $5-\mathrm{H}$ and $7 \mathrm{a}-\mathrm{H}$.

The structure of the isoxazolidine $\mathbf{1 2}$ was confirmed by single-crystal X-ray crystallographic analysis. In the crystal there were two crystallographically independent molecules of compound $\mathbf{1 2}$ per asymmetric unit, but only one molecule of compound $\mathbf{1 2}$ is depicted in Fig. 4 along with the numbering system adopted for the structural study. The two molecules of compound $\mathbf{1 2}$ exhibit only minor structural differences apart from the orientation of the acetoxy side chain [cf. torsion angles $\mathrm{C}(8)-\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(7) \quad 82.5(3)^{\circ}$ and $\mathrm{C}\left(8^{\prime}\right)-\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)$ 147.1(2) ${ }^{\circ}$. Since Mo -K α X-radiation was used, the absolute configuration of compound $\mathbf{1 2}$ could not be determined unambiguously from the X-ray analysis and was assigned, therefore, with reference to the starting material, d-ribose. The results of this study clearly show the tricyclic nature of the isoxazolidine $\mathbf{1 2}$ which has been formed by the least sterically hindered intramolecular [3+2] cycloaddition process, resulting in the two five-membered rings being anti with respect to each other. Consistent with ${ }^{1}$ H NMR data above, the central sixmembered ring adopts a flattened boat conformation with atoms $C(3)$ and $C(6)$ being displaced out of the plane defined by atoms $C(2), C(4), C(5)$ and $C(7)(+0.34$ and $+0.67 \AA$ respectively).

The N-O bond cleavage of compound $\mathbf{1 2}$ proved to be somewhat difficult in that attempted reduction under various conditions ($\mathrm{PtO}_{2} / \mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C} / \mathrm{H}_{2}, \mathrm{Zn} / \mathrm{AcOH}, \mathrm{TiCl}_{3}, \mathrm{H}_{2} /$ R aney nickel) failed to effect this cleavage. Cleavage of the isoxazolidine ring was finally accomplished by hydrogenation over Pearlman's catalyst ${ }^{10}$ (20% palladium hydroxide on carbon) to afford the amino alcohol 14 in almost quantitative yield (Scheme 2).

With the amino alcohol 14 in hand we studied its oxidation Oxidation with pyridinium chlorochromate (PCC) afforded the α, β-unsaturated aldehyde $16, \mathrm{mp} 57-58^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}+34.9$ (c 0.93

minor

Scheme 1 Reagents and conditions (yields in parentheses): i, acetone, $\mathrm{H}_{2} \mathrm{SO}_{4}$ (cat.), room temp., 4 h (73\%); ii, allylmagnesium chloride, TH F, $0^{\circ} \mathrm{C}$ to room temp., 14 h (mixture of diastereoisomers, $4: 5=5: 1$); iii, aq. NalO_{4}, room temp., 2 h (94% total for two steps, mixture of anomers); iv, M eN HOH•HCl , pyridine, room temp., $17 \mathrm{~h} ; \mathrm{v}, \mathrm{PhM}$ e, reflux, 16 h (91\% total, two steps); vi, A c20, pyridine, D M A P, room temp., 9 h (67% for 12 and 11% for 13)
in CHCl_{3}), but the yield was very low ($\sim 15 \%$). A ttempts to oxidise 14 with pyridinium dichromate (PDC) under a range of conditions only led to the recovery of starting material. Considering the nature of the β-elimination involved in this reac-

Fig. 3 Boat conformation for cyclohexane moiety

14
15

18

17

19

Scheme 2 Reagents and conditions (yields in parentheses): i, $\mathrm{Pd}(\mathrm{OH})_{2}-$ $\mathrm{C}(20 \%), \mathrm{H}_{2}(2 \mathrm{~atm}), \mathrm{MeOH}, 30 \mathrm{~h}(100 \%) \mathrm{ii}, \mathrm{M} \mathrm{el}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{THF}$, room temp., $30 \mathrm{~h}(87 \%)$; iii, D M SO, $(\mathrm{COCI})_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 50 \mathrm{~min}$; then $\mathrm{Et}_{3} \mathrm{~N},-78{ }^{\circ} \mathrm{C}$ to room temp. (79\%); iv, $\mathrm{NaClO}_{2}, \mathrm{NaH}_{2} \mathrm{PO}_{4}, \mathrm{H}_{2} \mathrm{O}_{2}$, aq. M eCN , room temp., $1 \mathrm{~h}(67 \%)$; v, $\mathrm{K}_{2} \mathrm{CO}_{3}$, aq. M eOH , room temp., 12 h ; vi, aq. TFA (50\%), room temp., 10 h (80% two steps); vii, $\mathrm{CH}_{2} \mathrm{~N}_{2}, \mathrm{Et}_{2} \mathrm{O}$, $0^{\circ} \mathrm{C}$ (62\% over two steps from 17)
tion, we prepared the quaternary ammonium salt $\mathbf{1 5}$ in 87% yield by treatment of amine $\mathbf{1 4}$ with iodomethane and potassium carbonate in tetrahydrofuran (THF). When salt 15 was subjected to oxidation with PCC in dichloromethane in the presence of $3 \AA$ molecular sieves the aldehyde 16 was isolated in 22% yield due to incomplete reaction. However, we were pleased to find that treatment of salt $\mathbf{1 5}$ under Swern conditions ${ }^{11}$ afforded α, β-unsaturated aldehyde 16 in good yield (79\%). F urther oxidation of aldehyde 16 to the carboxylic acid 17 was accomplished with sodium chlorite and hydrogen peroxide. ${ }^{12}$ The acid 17 was deacetylated with potassium carbonate in aq. methanol to give the crystalline acid 18, which was further deprotected by acidic hydrolysis in 50% aqueous trifluoroacetic acid (TFA) to afford 5-epi-shikimic acid 2 as crystals, mp $155-156.5^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}-57.6$ (c $0.83, \mathrm{MeOH}$), in an overall yield of 80% from compound 17 .
In order to correlate (-)-5-epi-shikimic acid 2 stereochemically to known compounds in the literature, we chose to prepare the methyl ester 19, whose enantiomer as well as the racemate had been reported. Esterification of $\mathbf{1 8}$ with diazomethane afforded the methyl ester 19 as an oil, $[a]_{\mathrm{D}}+26.8$ (c $0.67, \mathrm{CHCl}_{3}$) $\left\{\right.$ lit. ${ }^{13}[a]_{\mathrm{D}}-33.0$ (c $0.667, \mathrm{CHCl}_{3}$); lit., ${ }^{14}[a]_{\mathrm{D}}$ -33.5 ; lit., ${ }^{15}[a]_{\mathrm{D}}-23.94$ (c 1.17, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), all for the enantiomer\}. The ester 19 exhibited identical IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra with those reported.
A ttempts to carry out an inversion of stereochemistry at C-5
of the isoxazolidine $\mathbf{1 0}$, in order to prepare shikimic acid $\mathbf{1}$, were unsuccessful under a variety of conditions, whilst the above Grignard route only provided limited access to 11. Other workers have reported that racemic methyl ester 19 can be converted to its $\mathrm{C}-5$ epimer, but the procedure was indirect and low yielding. ${ }^{16}$ We thus investigated an alternative approach to the synthesis of (-)-shikimic acid $\mathbf{1}$ (Scheme 3), in which the desired stereochemistry at C-5 was established at an early stage.

The d-ribonolactone derivative $20,{ }^{17}$ prepared either from compound $\mathbf{3}$ by sequential silylation and oxidation, or from d-ribonolactone ${ }^{18}$ was treated with allylmagnesium chloride at $-78^{\circ} \mathrm{C}$ to afford the lactol 21 as an anomeric mixture in 87% yield. Reduction of lactol 21 with diisobutylaluminium hydride (DIBAL) gave a single diol 22 in 88% yield together with some recovered starting material. The stereoselectivity can be rationalised by either a Felkin-A nh model, or a chelated transition state, similar to Figs. 1 and 2, respectively. Desilylation of compound $\mathbf{2 2}$ gave the triol 5 , which upon cleavage with sodium periodate gave the hemiacetal 7 in 92% yield. Treatment of compound 7 with N -methylhydroxylamine hydrochloride in pyridine followed by heating of the crude nitrone in toluene, led to a single isoxazolidine $\mathbf{1 1}$ in 95% yield for the two steps. A cetylation with acetic anhydride in pyridine afforded acetate 13, identical with the minor isomer produced using the chemistry of Scheme 1. Cleavage of the isoxazolidine ring proceeded smoothly with Pearlman's catalyst and provided the amino alcohol $\mathbf{2 3}$ in almost quantitative yield. M ethylation of free amine 23 with iodomethane gave the quaternary ammonium salt 24 as crystals in 80% yield. Oxidation of compound 24 under Swern conditions afforded the α, β-unsaturated aldehyde 25. Further oxidation of aldehyde $\mathbf{2 5}$ with sodium chlorite and hydrogen peroxide gave the carboxylic acid 26 in 91% yield, and subsequent removal of the acetate and isopropylidene groups led to (-)-shikimic acid 1, $[a]_{\mathrm{D}}-175.4$ (c 0.59 , water) [lit., ${ }^{\text {5a }}$ - 179.6 (c 4, water)], via the partially deprotected acid 27.

Experimental

M ps were determined on either an Electrothermal capillary melting point apparatus or a Reichert hot-stage apparatus and are uncorrected. IR spectra were recorded on a Perkin-EImer 1600 series FT-IR instrument. ${ }^{1} \mathrm{H}$ NM R spectra were obtained on either a JEOL EX $90(90 \mathrm{MHz})$, JEOL FX $270(270 \mathrm{M} \mathrm{Hz})$, Bruker WP $200(200 \mathrm{MHz})$ or Bruker WH $400(400 \mathrm{MHz})$ instrument. Chemical shifts were measured relative to tetramethylsilane ($\delta \mathrm{TM} \mathrm{S}=0$), using either tetramethylsilane or the solvent as internal reference. All coupling constants, J, are given in Hertz. ${ }^{13} \mathrm{C}$ N M R spectra were obtained on the same instruments ($22.5 \mathrm{M} \mathrm{Hz}, 67.8 \mathrm{M} \mathrm{Hz}, 50 \mathrm{M} \mathrm{Hz}$ or 100 M Hz) with proton decoupling. Chemical shifts were measured relative to δ TM $\mathrm{S}=0$, using either tetramethylsilane or the solvent as internal reference. U nless otherwise stated, solutions in deuteriochloroform were used for the determination of N M R spectra. M ass spectra were recorded on either an AEI M S 902 or a VG ZAB-E instrument. High-resolution mass spectra were recorded on the VG ZAB-E instrument. Microanalyses were performed by M EDAC Ltd. Optical rotations were measured at room temperature using a Bellingham and Stanley P20 polarimeter, and $[a]_{D}$ values are given in units of 10^{-1} deg $\mathrm{cm}^{2} \mathrm{~g}^{-1}$. Flash chromatography was performed on Fluka silica gel 60 (220-440 mesh), and the solvent light petroleum, which refers to the fraction boiling in the range $40-60^{\circ} \mathrm{C}$, was distilled prior to use TLC was carried out using pre-coated aluminium plates (M erck Kieselgel $60 \mathrm{~F}_{254}$) which were visualised with UV light and then with either basic aq. potassium permanganate or acidic ammonium molybdate as appropriate.
Dry THF was distilled from sodium-benzophenone ketyl. Dichloromethane, pyridine and dimethyl sulfoxide (DMSO) were distilled from calcium hydride and stored over $3 \AA$ molecular sieves. Toluene was distilled from calcium hydride and

1

Scheme 3 Reagents and conditions (yields in parentheses): i, allylmagnesium chloride, THF, $-78{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$; ii, DIBAL, PhM e, $-78{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}(88 \%)$; iii, $\mathrm{Bu}_{4} \mathrm{NF}$, TH F , room temp., $10 \mathrm{~h}\left(72 \%\right.$); iv, aq. NaIO_{4}, room temp., $2 \mathrm{~h}(92 \%$, mixture of anomers); $\mathrm{v}, \mathrm{M} \mathrm{eN} \mathrm{HOH} \cdot \mathrm{HCl}$, pyridine, room temp., 20 h (100\%); vi, PhM e, reflux, $18 \mathrm{~h}(95 \%)$; vii, A c20, pyridine, D M A P, room temp., $10 \mathrm{~h}(93 \%)$; viii, $\mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}(20 \%), \mathrm{H}_{2}$ (2 atm), M eOH , 2 days (100\%); ix, $\mathrm{M} \mathrm{el}, \mathrm{K}_{2} \mathrm{CO}_{3}$, THF, room temp., $30 \mathrm{~h}\left(80 \%\right.$); $\mathrm{x}, \mathrm{D} \mathrm{M} \mathrm{SO},(\mathrm{COCl})_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 55 \mathrm{~min}$; then $\mathrm{Et}_{3} \mathrm{~N},-78{ }^{\circ} \mathrm{C}$ to room temp. (71%); xi, NaClO 2 , $\mathrm{NaH}{ }_{2} \mathrm{PO}_{4}, \mathrm{H}_{2} \mathrm{O}_{2}$, aq. M eCN , room temp., $2 \mathrm{~h}\left(91 \%\right.$); xii, $\mathrm{K}_{2} \mathrm{CO}_{3}$, aq. M eOH , room temp., 12 h ; xii, aq. TFA (50%), room temp., 10 h (79% over two steps)
stored over $4 \AA$ molecular sieves. M ethanol and ethanol were distilled from $\mathrm{Mg} / /_{2}$ and stored over $3 \AA$ molecular sieves. Other organic solvents and reagents were purified by standard procedures as necessary. Reactions requiring anhydrous conditions were performed in flame or oven-dried apparatus under argon or nitrogen.

1,2,3-T rideoxy-5,6-0-isopropylidene-d-allo-oct-1-enitol 4 and 1,2,3-trideoxy-5,6-0 -isopropylidene-d-altro-oct-1-enitol 5

A THF solution of allylmagnesium chloride ($170 \mathrm{ml}, 394 \mathrm{mmol}$) was added dropwise via a double-tipped needle to a stirred solution of the hemiacetal $\mathbf{3}(12.25 \mathrm{~g}, 64.4 \mathrm{mmol})$ in THF $\left(200 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. A fter the addition and stirring of the mixture at $0^{\circ} \mathrm{C}$ for 4 h , the mixture was allowed to warm to room temperature at which point it was stirred for 10 h . The reaction was quenched with saturated aq. ammonium chloride ($250 \mathrm{~cm}^{3}$), and the mixture was extracted with ethyl acetate ($3 \times 250 \mathrm{~cm}^{3}$). The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to give a crude mixture of compounds 4
and 5 (12.7 g), which was used directly in the next reaction without further purification. A sample was purified for analysis on silica gel with 14% light petroleum in diethyl ether as eluent to afford a 5:1 mixture of diastereoisomers 4 and 5 as an oil, $[a]_{\mathrm{D}}+12.3$ (c 1.47, CHCl_{3}); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3354(\mathrm{OH}), 3077$ ($\mathrm{C}=\mathrm{CH}_{2}$) , 2987, 2935, 1642 ($\mathrm{C}=\mathrm{C}$), 1435, 1382, 1371, 1220, 1169 and $1066 ; \delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}$) (mixture of diastereoisomers, major 4 : minor $5=5: 1) 1.32(2.49 \mathrm{H}, \mathrm{s}, 4 \mathrm{M} \mathrm{e}), 1.33(0.51 \mathrm{H}, \mathrm{s}, 5 \mathrm{Me})$, $1.37(2.49 \mathrm{H}, \mathrm{s}, 4 \mathrm{M} \mathrm{e}), 1.45(0.51 \mathrm{H}, \mathrm{s}, 5 \mathrm{M} \mathrm{e}), 2.21(0.83 \mathrm{H}, \mathrm{dt}, \mathrm{J}$ 14.3 and $8.4,4 \mathrm{CHHCH}=), 2.39-2.45\left(0.51 \mathrm{H}, \mathrm{m}, 5 \mathrm{CH} \mathbf{2}^{2} \mathrm{CH}=\right.$, OH), 2.49 ($0.83 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.9,4 \mathrm{OH}$), 2.62 ($0.17 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0,5 \mathrm{OH}$), 2.60-2.66 ($0.83 \mathrm{H}, \mathrm{m}, 4 \mathrm{CH}$ HCH=), $3.31(0.83 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.1,4$ OH), 3.60-3.72 ($1.17 \mathrm{H}, \mathrm{m}, 4 \mathrm{CHHOH} ; 5 \mathrm{CH}_{2} \mathrm{OH}$), 3.81-3.90 ($2.66 \mathrm{H}, \mathrm{m}, 42 \times \mathrm{CHOH}, \mathrm{CHHOH} ; 5 \mathrm{OH}$), 3.94-3.98 (0.34 H , $\mathrm{m}, 5 \mathrm{CH} O \mathrm{H}, \mathrm{CH} O R), 4.00(0.83 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.4$ and $5.4,4 \mathrm{CHOR}$), 4.06-4.12 ($0.34 \mathrm{H}, \mathrm{m}, 5 \mathrm{CH}$ OH , CH OR), 4.11 ($0.83 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.4$ and 5.4, 4 CHOR), $4.16(0.83 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.2,4 \mathrm{OH}), 5.10-5.22(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right)$ and $5.79-5.93\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right) ; \delta_{\mathrm{c}}(100 \mathrm{MHz})$ (major 4) $25.29(\mathrm{Me}), 27.85(\mathrm{M} \mathrm{e}), 38.41\left(\mathrm{CH}_{2} \mathrm{CH}=\right), 64.31$
$\left(\mathrm{CH}_{2} \mathrm{OH}\right), 68.33,69.24,77.60,79.45$ ($4 \mathrm{C}, 2 \times \mathrm{CHOR}$, $2 \times \mathrm{CHOH}), 108.66\left(\mathrm{CMe}_{2}\right), 118.97\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$ and 133.79 ($\mathrm{CH}=\mathrm{CH}_{2}$); (minor 5) $25.12\left(\mathrm{Me}\right.$), $27.41\left(\mathrm{Me}\right.$), $39.79\left(\mathrm{CH}_{2} \mathrm{CH}=\right.$), $64.37\left(\mathrm{CH}_{2} \mathrm{OH}\right), 68.10,69.40,77.02,78.04(4 \mathrm{C}, 2 \times \mathrm{CHOR}$, $2 \times \mathrm{CHOH}), 108.13\left(\mathrm{CMe}_{2}\right), 117.98\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$ and 134.30 ($\mathrm{CH}=\mathrm{CH}_{2}$).

5,6,7-T rideoxy-2,3-0 -isopropylidene- α, β-L-ribo-hept-6enofuranose 6 and 5,6,7-trideoxy-2,3-0-isopropylidene- $\alpha, \beta-\mathrm{D}$ -lyxo-hept-6-enofuranose 7

The crude mixture of triols 4 and $5(12.7 \mathrm{~g})$ was dissolved in water ($130 \mathrm{~cm}^{3}$) and sodium periodate ($16.5 \mathrm{~g}, 77.3 \mathrm{mmol}$) was added. A fter being stirred for 2 h at room temperature the mixture was extracted with ethyl acetate ($3 \times 130 \mathrm{~cm}^{3}$), the extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was purified by flash column chromatography with light petroleum-diethyl ether ($3: 1$) as eluent to yield an inseparable mixture of lactols 6 and 7 ($12.14 \mathrm{~g}, 94 \%$ overall yield for two steps) as an oil, $[a]_{\mathrm{D}}$ +7.5 (c 1.94, CHCl_{3}); $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3423(\mathrm{OH}), 3077$ ($\mathrm{C}=\mathrm{CH}_{2}$) , 2983, 2940, 1642 ($\mathrm{C}=\mathrm{C}$) , 1437, 1374, 1211, 1161 and 1073; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz})$ (mixture of diastereoisomers, major $6:$ minor $7=83: 17,6 \alpha: 6 \beta: 7 \alpha: 7 \beta$ as $24: 59: 16: 1$) 1.29 (2.25 $\mathrm{H}, \mathrm{s}, \mathbf{6} \boldsymbol{\beta} \mathrm{Me}, \mathbf{7} \boldsymbol{\alpha} \mathrm{Me}$), $1.34(0.03 \mathrm{H}, \mathrm{s}, 7 \boldsymbol{\beta} \mathrm{Me}$ e), $1.35(0.72 \mathrm{H}, \mathbf{6} \boldsymbol{\alpha}$ $\mathrm{M} \mathrm{e}), 1.44(0.48 \mathrm{H}, \mathrm{s}, 7 \boldsymbol{\alpha} \mathrm{M} \mathrm{e}), 1.45(1.77 \mathrm{H}, \mathrm{s}, 6 \boldsymbol{\beta} \mathrm{Me}$), $1.51(0.03$ $\mathrm{H}, \mathrm{s}, 7 \boldsymbol{\beta} \mathrm{Me}$), $1.54(0.72 \mathrm{H}, \mathrm{s}, 6 \boldsymbol{\alpha} \mathrm{Me}), 2.20-2.50(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\right), 3.22(0.16 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.5,7 \alpha \mathrm{OH}), 3.38(0.59 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8$, $6 \beta \mathrm{OH}), 3.49\left(0.01 \mathrm{H}, \mathrm{dt}, \mathrm{J} 3.2\right.$ and $\left.7.0,7 \beta 0 \mathrm{CHCH}_{2}\right)$, $3.91(0.01$ H, d, J $12.2,7 \beta O H$), $3.93(0.24 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.2,6 \alpha \mathrm{OH}$), $4.12(0.24$ H, dt, J 2.8 and $6.8,6 \boldsymbol{\alpha} \mathrm{OCHCH} 2), 4.16(0.16 \mathrm{H}, \mathrm{dt}$, J 3.6 and $\left.7.0,7 \boldsymbol{\alpha} \mathrm{OCHCH}_{2}\right), 4.22(0.59 \mathrm{H}, \mathrm{dt}, \mathrm{J} 1.0$ and 7.7, $6 \boldsymbol{\beta}$ $\mathrm{OCHCH} 2), 4.46(0.24 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.8$ and $2.8,6 \boldsymbol{\alpha} \mathrm{CH} O R), 4.47$ (0.01 H , dd, J 6.1 and $3.5,7 \beta$ CH OR), 4.56 (0.01 H , dd, J 6.1 and $3.2,7 \boldsymbol{\beta} \mathrm{CHOR}$), $4.57(0.16 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.9,7 \boldsymbol{\alpha} \mathrm{CHOR}), 4.58-$ 4.62 ($1.42 \mathrm{H}, \mathrm{m}, 6 \boldsymbol{\beta} 2 \times \mathrm{CH}$ OR , $\mathbf{6} \boldsymbol{\alpha}$ CHOR $)$) $4.65(0.16 \mathrm{H}, \mathrm{dd}$, J 5.9 and $3.6,7 \boldsymbol{\alpha}$ CHOR $), 4.93(0.01 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.2$ and $3.5,7 \boldsymbol{\beta}$ $\mathrm{CHOH}), 5.04-5.20\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.26(0.24 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.2$ and 4.1, $\mathbf{6} \boldsymbol{\alpha} \mathrm{CHOH}$), $5.33(0.16 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.5, \mathbf{6} \boldsymbol{\alpha} \mathrm{CHOH}), 5.41$ ($0.59 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8,6 \beta \mathrm{CHOH}$) and 5.71-5.89 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}$); $\delta_{\mathrm{c}}(22.5 \mathrm{M} \mathrm{Hz})(6 \boldsymbol{\beta}) 24.73(\mathrm{M} \mathrm{e}), 26.22(\mathrm{M} \mathrm{e}), 39.62\left(\mathrm{CH}_{2} \mathrm{C}=\right)$, $83.44,85.83,85.98(3 \mathrm{C}, 3 \times \mathrm{CHOR}), 102.72(\mathrm{OCHOH}), 112.12$ $\left(\mathrm{CMe}_{2}\right), 117.37\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$ and $133.96\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$; $(\mathbf{6} \boldsymbol{\alpha}) 24.73$ (Me), 25.92 (Me), 36.81 ($\mathrm{CH}_{2} \mathrm{C}=$), 79.30, 79.66, 82.82 (3 C, $3 \times \mathrm{CHOR}), \quad 95.65(\mathrm{OCHOH}), \quad 114.47 \quad\left(\mathrm{CMe}_{2}\right), \quad 117.90$ $\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$ and $132.94\left(\mathrm{CH}=\mathrm{CH}_{2}\right) ;(7 \boldsymbol{a}) 24.73(\mathrm{Me}), 25.80(\mathrm{Me})$, $32.70\left(\mathrm{CH}_{2} \mathrm{C}=\right), 79.30,79.98,85.44(3 \mathrm{C}, 3 \times \mathrm{CHOR}), 100.45$ $(\mathrm{OCHOH}), 112.12\left(\mathrm{CMe}_{2}\right), 116.89\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$ and 134.13 $\left(\mathrm{CH}=\mathrm{CH}_{2}\right.$) (Found: $\mathrm{C}, 59.78 ; \mathrm{H}, 8.01 . \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{4}$ requires C , 59.98; H, 8.05\%).
(3aS,5S,6S,7R ,7aS)-0 ctahydro-5-hydroxy-6,7-isopropylidene-dioxy-1-methyl-2,1-benzisoxazole 10 and (3aS,5R,6S,7R ,7aS)-octahydro-5-hydroxy-6,7-isopropylidenediox y-1-methyl-2,1benzisoxazole 11
The hemiacetals 6 and $\mathbf{7}(12.0 \mathrm{~g}, 59.93 \mathrm{mmol}$) were dissolved in pyridine ($180 \mathrm{~cm}^{3}$) with N -methylhydroxylamine hydrochloride ($50.0 \mathrm{~g}, 598.7 \mathrm{mmol}$). A fter stirring of the mixture at room temperature for 17 h the pyridine was removed under reduced pressure and the residue was co-evaporated with toluene. The residue was partitioned between water ($200 \mathrm{~cm}^{3}$) and ethyl acetate ($3 \times 250 \mathrm{~cm}^{3}$). The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was passed through a short column of silica gel with light petroleumdiethyl ether ($1: 2$) as eluent to give a mixture of the nitrones 8 and $9(13.74 \mathrm{~g}, 100 \%)$ as an oil which solidified on storage at $-20^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}(90 \mathrm{M} \mathrm{Hz}$), $1.34(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}), 1.51$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}$), $2.35-$ $2.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\right), 2.68(3 \mathrm{H}, \mathrm{s}, \mathrm{NM}$ e), $3.74(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, OH) , 4.02-4.94 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}, 2 \times \mathrm{CHOR}$), 5.04-5.31 (2 H , $\left.\mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.64-6.02\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right)$ and $6.84(1 \mathrm{H}, \mathrm{d}$, $\mathrm{CH}=\mathrm{N}$).

This mixture of nitrones was then dissolved in dry toluene
($400 \mathrm{~cm}^{3}$) and the solution was heated at reflux for 16 h . The solvent was evaporated off under reduced pressure, and the residue was purified by flash chromatography on silica gel with 5% light petroleum in diethyl ether as eluent to give an inseparable mixture of the isoxazolidines $\mathbf{1 0}$ and $\mathbf{1 1}(12.52 \mathrm{~g}, 91 \%)$ as an oil, $[a]_{\mathrm{D}}-97.5$ (c 1.35, CHCl_{3}); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3475(\mathrm{OH})$, 2870, 2936, 2984, 1456, 1380, 1261, 1210, 1167 and 1053; $\delta_{\mathrm{H}}(400$ MHz) (major 10 and minor 11 in the ratio 6:1) $1.30(0.84 \mathrm{H}$, ddd, J 13.6, 4.9 and 2.6, major CH HCHOH), 1.33 ($0.48 \mathrm{H}, \mathrm{s}$, minor Me), 1.35 ($2.52 \mathrm{H}, \mathrm{s}$, major Me), 1.45 ($0.48 \mathrm{H}, \mathrm{s}$, minor M e), 1.49 ($2.52 \mathrm{H}, \mathrm{s}$, major M e), 1.59 (0.16 H , ddd, J 14.2, 6.5 and 3.6, minor CH HCHOH), 2.00 (0.16 H, ddd, J 14.2, 7.7 and 2.9, minor CHHCHOH), $2.05(0.84 \mathrm{H}$, ddd, J 13.6, 9.5 and 7.2 , major CHHCHOH), 2.29 ($0.84 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3$, major OH), 2.69 (2.52 H , s, major N M e), 2.73 ($0.48 \mathrm{H}, \mathrm{s}$, minor N M e), 2.87-3.05 (1.16 H , m, major $\mathrm{CHCH}_{2} \mathrm{ON}$; minor $\mathrm{NCH}, \mathrm{CHCH}_{2} \mathrm{ON}$), 2.93 (0.84 H , dd, J 9.0 and 3.2 , major N CH), 3.52 (0.84 H , dd, J 8.3 and 6.2, major CHHON), 3.74 (0.32 H , dd, J 8.1 and 4.2, minor $\mathrm{CH}_{2} \mathrm{ON}$), 4.10 ($0.84 \mathrm{H}, \mathrm{dq}, \mathrm{J} 3.2$ and 6.3 , major CHOH), 4.18 ($0.84 \mathrm{H}, \mathrm{t}, \mathrm{J}$ 8.3, major CHHON), 4.18-4.23 ($0.32 \mathrm{H}, \mathrm{m}$, minor $\mathrm{CHOH}, \mathrm{CHOR}), 4.23(0.84 \mathrm{H}$, dd, J 7.8 and 3.2 , major CHOR), $4.25(0.84 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.8$ and 3.2, major CHOR), 4.29 (0.16 H , dd, J 7.2 and 2.3 , minor CH OR) and 4.33 (0.16 H , br s, minor OH); $\delta_{\mathrm{c}}(22.5 \mathrm{M} \mathrm{Hz}$) (major 10) $23.80(\mathrm{Me}$), $25.98(\mathrm{M} \mathrm{e})$, $28.16\left(\mathrm{CH}_{2} \mathrm{CHOH}\right), 37.62\left(\mathrm{CHCH}_{2}\right), 44.06(\mathrm{~N} \mathrm{M} \mathrm{e)}$, 64.14, $67.81,71.54,74.35$ (2C) ($5 \mathrm{C}, \mathrm{CHN}, 2 \times \mathrm{CHOR}, \mathrm{CHOH}$, $\mathrm{CH}_{2} \mathrm{ON}$) and $108.12\left(\mathrm{CMe}_{2}\right)$; (minor 11) $24.13(\mathrm{Me}), 26.76$ (M e), $29.20\left(\mathrm{CH}_{2} \mathrm{CHOH}\right), 37.62\left(\mathrm{CHCH}_{2}\right), 43.70(\mathrm{~N} \mathrm{M} \mathrm{e)}$,67.81 , $68.65,72.67$ (2C), 77.54 ($5 \mathrm{C}, \mathrm{CHN}, 2 \times \mathrm{CHOR}, \mathrm{CHOH}$, $\mathrm{CH}_{2} \mathrm{ON}$) and 108.12 ($\mathrm{CM} \mathrm{e}_{2}$) (Found: C, 57.43; H, 8.41; N, 6.05 . $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{4}$ requires $\mathrm{C}, 57.63 ; \mathrm{H}, 8.35 ; \mathrm{N}, 6.11 \%$).

(3aS,5S,6S,7R ,7aS)-5-A cetoxyoctahydro-6,7-isopropylidene-dioxy-1-methyl-2,1-benzisoxazole 12 and (3aS,5R ,6S,7R ,7aS)-5-acetox yoctahydro-6,7-isopropylidenedioxy-1-methyl-2,1benzisoxazole 13

The isoxazolidines 10 and $\mathbf{1 1}(3.39 \mathrm{~g}, 14.8 \mathrm{mmol})$ were dissolved in pyridine ($70 \mathrm{~cm}^{3}$) with 4-(dimethylamino)pyridine (D M A P) ($361 \mathrm{mg}, 3.0 \mathrm{mmol}$), and acetic anhydride ($5.58 \mathrm{ml}, 59.15 \mathrm{mmol}$) was added. The solution was stirred at room temperature for 9 h, the pyridine was then removed under reduced pressure, and further by co-evaporation of the residue with toluene. The residue was partitioned between water ($150 \mathrm{~cm}^{3}$) and ethyl acetate $\left(3 \times 160 \mathrm{~cm}^{3}\right)$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Column chromatography of the residue on silica gel with light petroleum-diethyl ether (1:2) as eluent gave a mixture, which was then subjected to repeated crystallisation from light petroleum-ethyl acetate to afford the major compound $\mathbf{1 2}(2.67 \mathrm{~g}, 67 \%)$ as crystals and the remaining oil, which was further purified by flash chromatography on silica gel with light petroleum-diethyl ether (1:2) as eluent to give the minor compound $13(0.44 \mathrm{~g}, 11 \%)$ as an oil.
The major compound (less polar) 12, mp 103.5-104.5 ${ }^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}-144.6$ (c 1.30, CHCl_{3}); $v_{\text {max }}\left(\mathrm{K} \mathrm{Br}^{2}\right) / \mathrm{cm}^{-1} 2987,2943,2918$, 2877, $1734(\mathrm{C}=0), 1457,1372,1248,1211$ and 1053; $\delta_{\mathrm{H}}(400$ $\mathrm{MHz}) 1.356(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}), 1.36(1 \mathrm{H}, \mathrm{ddt}, \mathrm{J} 13.2,1.3$ and 2.9, CHHCHOAC), 1.52 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 2.09 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COM} \mathrm{e}$), 2.12 (1 H, ddd, J 13.2, 11.5 and 7.1, CHHCHOAc), $2.70(3 \mathrm{H}, \mathrm{s}$, NM e), $2.80(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.9$ and $2.5, \mathrm{NCH}$), 2.95-3.03 ($1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHCH}_{2} \mathrm{ON}$), $3.65(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.4$ and $6.5, \mathrm{CH} \mathrm{HON}$), 4.17 (1 H , $\mathrm{t}, \mathrm{J} 8.4, \mathrm{CHHON}$), $4.29(1 \mathrm{H}, \mathrm{dd}$, J 7.7 and $2.6, \mathrm{CHORCHN}$), 4.44 (1 H , ddd, J 7.7, 3.6 and 1.1, CH ORCH OA c) and 5.30 (1 H, dt, J 11.5 and 3.3, CHOAc); $\delta_{\mathrm{c}}(22.5 \mathrm{M} \mathrm{Hz}) 21.27$ (COM e), 23.72, 24.52, 26.01 ($3 \mathrm{C}, \mathrm{CM} \mathrm{e}_{2}, \mathrm{CH}_{2} \mathrm{CH}$ OA C), 38.63, 44.15 (2 C , $\mathrm{CHCH}_{2} \mathrm{ON}, \mathrm{NMe}$), 67.39, 67.78, 71.69, 72.61, 74.14 (5 C , $\left.\mathrm{CHN}, \mathrm{CH}_{2} \mathrm{ON}, \mathrm{CHOAC}, 2 \times \mathrm{CHOR}\right)$, $108.66\left(\mathrm{CMe}_{2}\right)$ and 170.47 ($\mathrm{C}=0$) (Found; C, 57.62; H, 7.86; N, 5.12. $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N} \mathrm{O}_{5}$ requires $\mathrm{C}, 57.55 ; \mathrm{H}, 7.80 ; \mathrm{N}, 5.16 \%)$.
Crystal structure determination of compound 12. The crystal of compound $\mathbf{1 2}$ used for X -ray data collection (approx. dimen-

Fig. 4 The molecular structure of one molecule of tricyclic compound 12. The non-hydrogen atoms are represented by 30% probability ellipsoids, and hydrogen atoms by spheres of arbitrary radius. ${ }^{21}$
sions $0.3 \times 0.3 \times 0.25 \mathrm{~mm}$) was grown by slow evaporation from ethyl acetate-hexane (1:1) solution and mounted in a sealed Lindemann capillary tube.

Crystal data. $-\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{5}, \mathrm{M}=271.3$, needles, orthorhombic, space group $P 2_{1} 2_{2} 2_{1}(\mathrm{No}$. 19), $a=9.804(2), b=10.032(2)$, $c=28.607(6) \AA, V=2813.6(10) \AA^{3}, Z=8, D_{c}=1.281 \mathrm{~g} \mathrm{~cm}^{-3}$, $\mathrm{F}(000)=1168, \mu(\mathrm{M} \mathrm{o-K} \alpha)=0.098 \mathrm{~mm}^{-1}$.

Data collection. - The intensity data were collected on an Enraf-N onius diffractometer fitted with a FA ST area detector over the hemisphere [temperature 293(2) K; θ-range: 2.52 to $29.56^{\circ}-11 \leqslant h \leqslant 13,-13 \leqslant k \leqslant 13,-22 \leqslant 1 \leqslant 37$] using graphite-monochromated Mo-K $\alpha \mathrm{X}$-radiation ($\lambda 0.71073 \AA$) and ω-scanning. ${ }^{19}$ Of the 7014 unique data $[R(\mathrm{int})=0.081]$ measured, 4321 had $F_{0}>4 \sigma\left(F_{0}\right)$. The data were corrected for L orentz and polarisation effects, but not for absorption.
Structure solution. - The approximate positions of the nonhydrogen atoms were determined by direct methods (SH ELXS86^{20}). The structure was refined by full-matrix least-squares methods on F^{2} (SHELXTL/PC ${ }^{21}$) using all $\mathrm{F}_{\mathrm{o}}{ }^{2}$ data and anisotropic temperature factors for all the non-hydrogen atoms. All the hydrogen atoms were located on difference Fourier maps and included in the refinement process at idealised positions with isotropic temperature factors (1.5 times $\mathrm{U}_{\text {iso }}$ of the bonded heavy atom). At convergence, the discrepancy factors ${ }^{21} R_{1}$ $\left[F_{0}>4 \sigma\left(F_{0}\right)\right]$ and $w R_{2}$ were 0.057 and 0.122 respectively. The weighting scheme, $w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0724 P)^{2}\right]$ where $P=$ $\left(F_{0}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$, was found to give satisfactory analysis variance. The final difference Fourier map was essentially featureless (general noise level less than ± 0.10 e \AA^{-3} with the largest difference peak and holebeing 0.27 and -0.19 e \AA^{-3}, respectively. $\ddagger \mathrm{A}$ molecular structure is presented in Fig .4.

The minor compound (more polar) 13, $[a]_{\mathrm{D}}-109.6$ (c 1.15, $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}(\mathrm{film}) / \mathrm{cm}^{-1} 2985,2938,2873,1738$ (C=O), 1456, $1436,1372,1240,1169,1065$ and $864 ; \delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 1.35(3 \mathrm{H}, \mathrm{s}$, Me), $1.48(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.48(1 \mathrm{H}, \sim \mathrm{q}, \mathrm{J} 12.6, \mathrm{CHHCHOAc})$, $1.95(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 12.6,6.0$ and $3.6, \mathrm{CH}$ H CH OA C), $2.08(3 \mathrm{H}, \mathrm{s}$, COM e), 2.74 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 2.87-3.01 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}$, $\mathrm{CHCH}_{2} \mathrm{ON}$), 3.56 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.2$ and 3.1, CH HON), 4.14-4.23 ($3 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CHOR}, \mathrm{CH} \mathrm{HON}$) and $4.83(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 12.6,7.5$ and $3.6, \mathrm{CHOAC}$); $\delta_{\mathrm{c}}(22.5 \mathrm{M} \mathrm{Hz}) 21.18$ (COM e), $25.48(\mathrm{Me}$), 27.68 (Me), $29.56\left(\mathrm{CH}_{2} \mathrm{CHOAC}\right), 40.01\left(\mathrm{CHCH}_{2} \mathrm{ON}\right), 44.54$
\ddagger A tomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic D ata Centre (CCDC). See Instructions for Authors, J. Chem. Soc., Perkin Trans. 1, 1997, I ssue 1. A ny request to the CCD C for this material should quote the full literature citation and reference number 207/112.
($\mathrm{N} M \mathrm{e}$), 69.06, 70.94, 72.91, 75.18, 76.61 ($5 \mathrm{C}, \mathrm{CHN}, \mathrm{CH}_{2} \mathrm{ON}$, CHOAC, $2 \times$ CHOR), $108.89\left(\mathrm{CM}_{2}\right)$ and $170.53(\mathrm{C}=0) ; \mathrm{m} / \mathrm{z}$ (EI) $272\left(\mathrm{M}^{+}+\mathrm{H}\right), 271\left(\mathrm{M}^{+}\right), 256\left(\mathrm{M}^{+}-\mathrm{Me}\right), 214,154,124$, 98, 85 and $70 ; \mathrm{m} / \mathrm{z}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 272\left(\mathrm{M}^{+}+\mathrm{H}\right)$ (Found: M^{+}, 271.1420. $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N} \mathrm{O}_{5}$ requires $\mathrm{m} / \mathrm{z} 271.1420$).

($1 \mathrm{~S}, 2 \mathrm{2S}, 3 \mathrm{R}, 4 \mathrm{4S}, 5 \mathrm{~S}$)-5-A cetoxy-3,4-isopropylidenedioxy-2-(methylamino)cyclohexane-1-methanol 14

The isoxazolidine 12 ($1.13 \mathrm{~g}, 4.17 \mathrm{mmol}$) was shaken in dry methanol ($100 \mathrm{~cm}^{3}$) with Pearlman's catalyst [20\% Pd(OH $\left.)_{2}-\mathrm{C}\right]$ under hydrogen (2 atm) for 30 h . The mixture was filtered through Celite and the filtrate was evaporated under reduced pressure to afford the amino alcohol $14(1.14 \mathrm{~g}, 100 \%)$ as an oil, $\mathrm{R}_{\mathrm{f}} 0.20$ (ethyl acetate-methanol 1:1); [$\left.\alpha\right]_{\mathrm{D}}-29.8$ (c 1.24, CHCl_{3}); $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 3346(\mathrm{NH}, \mathrm{OH}), 2988,2937,2801,1732$ ($\mathrm{C}=0$) , 1452, 1374, 1244, 1048 and 756 ; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 1.35(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Me}), 1.52(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.72(1 \mathrm{H}, \mathrm{dt}$, J 13.5 and 5.0 , CH HCHOAC), 1.88 ($1 \mathrm{H}, \mathrm{ddd}$, J $13.5,11.0$ and $5.8, \mathrm{CHHCHOAC}$), 2.10 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COM}$ e), 2.41-2.47 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{OH}$), 2.49 (3 H, s, N M e), 2.82 ($1 \mathrm{H}, \operatorname{ddd}, \mathrm{J} 8.0,4.4$ and 1.0, CH N M e), 3.00$3.60(2 \mathrm{H}$, br s, NH, OH), $3.61(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 11.1,4.1$ and 1.0 , CHHH), 3.81 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.1$ and $10.0, \mathrm{CHHOH}$), $4.20(1 \mathrm{H}$, dd, J 8.0 and 5.4, CHORCHN), 4.39 ($1 \mathrm{H}, \mathrm{dd}$, J 5.4 and 4.0 , CHORCHOAC) and 5.16 (1 H , ddd, J $11.0,5.8$ and 4.0 , CH OAc); $\delta_{\mathrm{c}}(22.5 \mathrm{M} \mathrm{Hz}$) 21.06 (COM e), 25.65, 26.49, 27.77 (3 $\mathrm{C}, 2 \times \mathrm{Me}, \mathrm{CH}_{2} \mathrm{CHOAc}$), $33.23,34.93$ ($2 \mathrm{C}, \mathrm{NMe} \mathrm{CHCH}_{2} \mathrm{OH}$), 63.04, 64.17, 67.54, 73.63, 76.55 (5 C, CHOAC, CHNMe, $\mathrm{CH}_{2} \mathrm{OH}, 2 \times \mathrm{CHOR}$), 109.34 ($\mathrm{CM} \mathrm{e}_{2}$) and 170.29 (CO); m/z (EI) $274\left(\mathrm{M}^{+}+\mathrm{H}\right)$ and $232 ; \mathrm{m} / \mathrm{z}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 274\left(\mathrm{M}^{+}+\mathrm{H}\right)$ and 232 [Found ($\mathrm{Cl}, \mathrm{NH}_{3}$): $\mathrm{MH}^{+}, 274.1654 . \mathrm{C}_{13} \mathrm{H}_{24} \mathrm{NO}_{5}$ requires m / z 274.1653].
[(1S, $2 R, 3 S, 4 S, 6 S$)-4-A cetox y - 6 -hydroxymethyl-2,3-(isopropylidenedioxy)cyclohexyl]trimethylammonium iodide 15
Potassium carbonate ($142 \mathrm{mg}, 1.02 \mathrm{mmol}$) and iodomethane (2 $\mathrm{cm}^{3}, 32 \mathrm{mmol}$) were added to a solution of the amino alcohol $14(140 \mathrm{mg}, 0.51 \mathrm{mmol})$ in dry THF ($30 \mathrm{~cm}^{3}$); the reaction mixture was stirred at room temperature for 30 h , and then evaporated. The residue was taken up in chloroform ($50 \mathrm{~cm}^{3}$), filtered through Celite, and washed with chloroform ($20 \mathrm{~cm}^{3}$). The filtrate was evaporated under reduced pressure to leave a residue, which was partitioned between water ($50 \mathrm{~cm}^{3}$) and diethyl ether ($3 \times 50 \mathrm{~cm}^{3}$). The aqueous solution was freezedried to furnish the title compound 15 ($190 \mathrm{mg}, 87 \%$) as fine crystals, mp $102-107^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}+3.8$ (c 1.04, water); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) /$ $\mathrm{cm}^{-1} 3344$ (OH), 3055, 2985, 2941, 1732 (C=0), 1376, 1245 and 1051; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 1.37(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}), 1.63(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}), 1.96$ (1 $\mathrm{H}, \mathrm{dt}, \mathrm{J} 13.8$ and 4.2, CH HCHOAC), 2.10 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COM}$ e), 2.29 (1 H, ddd, J 13.8, 10.6 and 4.6, CH H CH OA c), 2.94-3.01 (1 H , $\mathrm{m}, \mathrm{CHCH} 2 \mathrm{OH}$), 3.59 ($9 \mathrm{H}, \mathrm{s}, \mathrm{NM} \mathrm{e}_{3}$), 3.83 (1 H , ddd, J 11.7, 6.7 and $4.9, \mathrm{CHHOH}), 3.89(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 11.7$ and $3.8, \mathrm{CHHOH})$, $4.07\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.8\right.$ and $3.9, \mathrm{CHNM} \mathrm{e}_{3}$), $4.13(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 4.2, \mathrm{OH})$, 4.57 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 4.9, \mathrm{CH}$ ORCH OA c), 4.97 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.8$ and 5.6 , $\mathrm{CHORCHN})$ and $5.22(1 \mathrm{H}, \mathrm{dt}$, J 10.6 and $4.9, \mathrm{CHOAC}$); $\delta_{\mathrm{c}}(100 \mathrm{M} \mathrm{Hz}) 20.98$ (COM e), 25.53, 27.63, 30.64, 35.81 (4 C, $\mathrm{CHCH}_{2} \mathrm{OH}, \mathrm{CH}_{2} \mathrm{CHOAC}, 2 \times \mathrm{Me}$), $54.94\left(3 \mathrm{C}, \mathrm{N} \mathrm{M} \mathrm{e}_{3}\right.$), 60.11, $65.96,72.67,74.38,75.76$ ($5 \mathrm{C}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CHN}, \mathrm{CHOAC}$, $2 \times$ CHOR), $110.51\left(\mathrm{CM} \mathrm{e}_{2}\right)$ and 170.01 (CO); m/z (FAB) 302 $\left(M^{+}-I\right), 270,258,242,143$ and 125 [Found (FAB): $M^{+}-1$, 302.1970. $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{NO}_{5}$ requires m / z 302.1967].

($3 \mathrm{R}, \mathbf{4 S}, 5 \mathrm{5S}$)-5-A cetoxy-3,4-(isopropylidenedioxy)cyclohex-1enecarbaldehyde 16

DM SO ($0.16 \mathrm{ml}, 2.29 \mathrm{mmol}$) was added to a solution of oxalyl dichloride ($0.1 \mathrm{ml}, 1.15 \mathrm{mmol}$) in dry dichloromethane ($10 \mathrm{~cm}^{3}$) at $-78^{\circ} \mathrm{C}$. A fter stirring the mixture for 20 min , the quaternary ammonium iodide 15 ($122.2 \mathrm{mg}, 0.28 \mathrm{mmol}$) in dichloromethane $\left(2 \mathrm{~cm}^{3}\right)$ was added. The solution was stirred for 50 min at $-78^{\circ} \mathrm{C}$, after which triethylamine ($0.81 \mathrm{ml}, 5.75 \mathrm{mmol}$) was added and the reaction mixture was allowed to warm to
room temperature. A fter 40 min the mixture was diluted with dichloromethane ($100 \mathrm{~cm}^{3}$) and washed with water ($120 \mathrm{~cm}^{3}$). The aqueous layer was then extracted with dichloromethane $\left(3 \times 100 \mathrm{~cm}^{3}\right)$. The combined organic extracts were washed with saturated aq. sodium chloride ($300 \mathrm{~cm}^{3}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified on silica gel with light petroleum-diethyl ether ($1: 1$) as eluent to give the α, β-unsaturated aldehyde 16 ($53 \mathrm{mg}, 79 \%$) as an oil which solidified on storage at $-20^{\circ} \mathrm{C}$, and which was recrystallised from light petroleum-ethyl acetate to yield a solid, mp 57$58{ }^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}+34.9\left(\mathrm{c} 0.92, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 2988,2935$, 2829, 1737 (ester C=0), 1689 ($\mathrm{CH}=0$), 1647 ($\mathrm{C}=\mathrm{C}$), 1373, 1236 and 1032; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.35(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.40(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e})$, 2.13 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COM} \mathrm{e}$), 2.39 (1 H , ddt, J 16.5, 10.5 and 2.5 , CH HC=), 2.69 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 16.5$ and $5.5, \mathrm{CH}$ H C $=$), 4.49-4.51 (1 H, m, CHOR), 4.87 ($1 \mathrm{H}, \mathrm{dt}$, J 5.1 and 2.3, CH OR), $5.08(1 \mathrm{H}$ ddd, J 10.5, 5.5 and 2.2, CH OAc), 6.53 ($1 \mathrm{H}, \sim \mathrm{t}, \mathrm{J} 2.9, \mathrm{CH}=\mathrm{C}$) and $9.52(1 \mathrm{H}, \mathrm{s}, \mathrm{CH} 0) ; \delta_{\mathrm{c}}(22.5 \mathrm{M} \mathrm{Hz}) 21.03,21.33,26.34,27.59$ (4 C, COMe, $2 \times \mathrm{Me}, \mathrm{CH}_{2} \mathrm{C}=$), 68.73, 73.30, 74.20 (3 C, CHOAC, $2 \times$ CHOR), 110.86 (CM e2), 138.28 ($=$ CCHO), 144.10 ($\mathrm{CH}=\mathrm{C}$) , 170.29 (COMe) and 192.52 (CHO); m/z (EI) 225 $\left(\mathrm{M}^{+}-\mathrm{Me}\right), 123$ and $95 ; \mathrm{m} / \mathrm{z}\left(\mathrm{Cl}, \mathrm{NH}_{3}\right) 258\left(\mathrm{M}^{+}+\mathrm{NH}_{4}\right), 241$ $\left(\mathrm{M}^{+}+\mathrm{H}\right), 183$ and 109 (Found ($\mathrm{CI}, \mathrm{NH}_{3}$): $\mathrm{M} \mathrm{H}^{+}, 241.1076$. $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{5}$ requires $\mathrm{m} / \mathrm{z} 241.1076$] (Found: C, 59.76; H, 6.79. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5}$ requires $\mathrm{C}, 59.99 ; \mathrm{H}, 6.71 \%$).

(3R,4S,5S)-5-A cetoxy-3,4-(isopropylidenedioxy)cyclohex-1enecarboxylic acid 17

To a solution of aldehyde 16 ($153.6 \mathrm{mg}, 0.64 \mathrm{mmol}$) in acetonitrile ($6 \mathrm{~cm}^{3}$) was added aq. monobasic sodium phosphate monohydrate ($27.5 \mathrm{mg}, 0.2 \mathrm{mmol}$ in $0.6 \mathrm{~cm}^{3}$) and hydrogen peroxide (30% aq. solution, $\sim 9.8 \mathrm{~m} ; 0.66 \mathrm{~cm}^{3}, 6.6 \mathrm{mmol}$), followed by dropwise addition of a solution of sodium chlorite (from A Idrich; 80% purity; $108.4 \mathrm{mg}, 0.96 \mathrm{mmol}$) in water (1.5 cm^{3}). The reaction mixture was stirred at room temperature for 1 h , diluted with saturated aq. sodium chloride ($60 \mathrm{~cm}^{3}$), and extracted with diethyl ether ($3 \times 60 \mathrm{~cm}^{3}$). The ethereal solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel with 0.3% acetic acid in light petroleum-diethyl ether (1:5) as eluent to give the acid $\mathbf{1 7}$ ($109.6 \mathrm{mg}, 67 \%$) as a solid, which was recrystallised from light petroleum-ethyl acetate as fine needles, $\mathrm{mp} 142-143^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}+36.5\left(\mathrm{c} 1.10, \mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ 3444 (OH), 2990, 2933, 1730 (ester C=0), 1685 (acid C=O) $1649(\mathrm{C}=\mathrm{C}), 1438,1378,1244,1072$ and 1037 ; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz})$ 1.37 ($3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}$), 1.40 ($3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}$), 2.14 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}$), 2.52 (1 H, ddt, J 16.5, 10.4 and 2.7, C H H C=), 2.71 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 16.5$ and 5.1, CH H C=), 4.45 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.0$ and 1.8, CH OR), 4.79 (1 H , dt , J 5.0 and 2.5, CH OR), 5.10 (1 H , ddd, J 10.4, 5.5 and 2.2 $\mathrm{CHOAc}), 6.85(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 3.0, \mathrm{CH}=\mathrm{C})$ and $9.00\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CO}_{2} \mathrm{H}\right)$; $\delta_{\mathrm{c}}(22.5 \mathrm{M} \mathrm{Hz}$) 21.18 (COM e), 23.87, 26.55, $27.75(3 \mathrm{C}, 2 \times \mathrm{Me}$ $\mathrm{CH}_{2} \mathrm{C}=$), 68.95, 73.51, 73.51 ($3 \mathrm{C}, \mathrm{CHOAC}, 2 \times \mathrm{CHOR}$), 110.90 $\left(\mathrm{CM} \mathrm{e}_{2}\right), 128.23\left(=\mathrm{CCO}_{2} \mathrm{H}\right), 137.45(\mathrm{CH}=\mathrm{C}), 170.57(\mathrm{COM} \mathrm{e})$ and $171.01\left(\mathrm{CO}_{2} \mathrm{H}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 241\left(\mathrm{M}^{+}-\mathrm{Me}\right), 139$ and $95 ; \mathrm{m} / \mathrm{z}$ $\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 274\left(\mathrm{M}^{+}+\mathrm{NH}_{4}\right), 257\left(\mathrm{M}^{+}+\mathrm{H}\right), 216$ and 199 [Found ($\mathrm{Cl}, \mathrm{NH}_{3}$): $\mathrm{M} \mathrm{H}^{+}, 257.1025 . \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{6}$ requires m / z, 257.1025] (Found: C, 56.37; H, 6.41. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{6}$ requires C , 56.25; H , 6.29\%)

(3R ,4S,5S)-3,4,5-T rihydroxycyclohex-1-enecarboxylic acid (5-epi-shikimic acid) 2

The acid 17 ($46.2 \mathrm{mg}, 0.18 \mathrm{mmol}$) was dissolved in 5% aq. methanol ($10 \mathrm{~cm}^{3}$) with potassium carbonate ($249 \mathrm{mg}, 1.8$ mmol) and the reaction mixture was stirred at room temperature for 12 h . The solution was acidified with aq. hydrochloric acid (2 m), and extracted with diethyl ether ($3 \times 50 \mathrm{~cm}^{3}$). The ethereal solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give (3R , 4S, 5S)-5-hydroxy-3,4-(isopropylidenedioxy)cyclohex-1-enecarboxylic acid 18 as a crystalline solid, which was then dissolved in 50% aq. TFA $\left(2 \mathrm{~cm}^{3}\right)$, and stirred at room temperature
for 10 h . Evaporation of the reaction mixture and further co-evaporation with dry ethanol afforded 5 -epi-shikimic acid 2 ($25 \mathrm{mg}, 80 \%$) as a crystalline solid, $\mathrm{mp} 155-156.5^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}-57.6$ (c $0.83, \mathrm{CH}_{3} \mathrm{OH}$); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3447(\mathrm{OH}), 2927,1693(\mathrm{C}=0)$ and $1649(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 2.36(1 \mathrm{H}$, dddd, J 17.2, 9.6, 3.3 and 2.6, CH H C=CH), 2.52 (1 H , dddd, J 17.2, 5.9, 1.7 and 1.3, $\mathrm{CHHC=CH}), 3.82(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.2$ and $5.9, \mathrm{CHOH}), 3.83$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.6$ and $5.9, \mathrm{CHOH}$), $3.90-3.95(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH})$ and 6.67 (1 H , ~ septet, J 1.3, CH=C); $\delta_{\mathrm{c}}(22.5 \mathrm{M} \mathrm{Hz;} \mathrm{CD} 3 \mathrm{OD}) 29.79$ ($\mathrm{CH}_{2} \mathrm{CHOH}$), $69.56,69.68,72.30(3 \mathrm{C}, 3 \times \mathrm{CHOH}), 130.30$ $\left(=\mathrm{CCO}_{2} \mathrm{H}\right), 139.97(\mathrm{CH}=\mathrm{C})$ and $169.89\left(\mathrm{CO}_{2} \mathrm{H}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 156$ $\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right), 138\left(\mathrm{M}^{+}-2 \mathrm{H}_{2} \mathrm{O}\right), 115,97,81,69$ and $60 ; \mathrm{m} / \mathrm{z}$ $\left(\mathrm{Cl}, \mathrm{NH}_{3}\right) 192\left(\mathrm{M}^{+}+\mathrm{NH}_{4}\right)$ [Found ($\mathrm{Cl}, \mathrm{NH}_{3}$): $\mathrm{MNH}_{4}{ }^{+}$, 192.0870. $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{NO}_{5}$ requires m / z 192.0872] (Found: C , 48.46; $\mathrm{H}, 6.16$. $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{5}$ requires $\left.\mathrm{C}, 48.28 ; \mathrm{H}, 5.79 \%\right)$.

M ethyl (3R,4S,5S)-5-hydroxy-3,4-(isopropylidenedioxy)-cyclohex-1-enecarboxylate 19

The acid 18 ($36.6 \mathrm{mg}, 0.143 \mathrm{mmol}$) and potassium carbonate $(197.4 \mathrm{mg}, 1.43 \mathrm{mmol}$) were dissolved in 5% aq. methanol (9.5 cm^{3}), and the reaction mixture was stirred at room temperature for 12 h . The solution was then acidified with aq. hydrochloric acid (2 m), and extracted with diethyl ether ($3 \times 20 \mathrm{~cm}^{3}$). The combined extracts were washed with saturated aq. sodium chloride ($60 \mathrm{~cm}^{3}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to leave ($3 R, 4 \mathrm{~S}, 5 \mathrm{~S}$)-5-hydroxy-3,4-(isopro-pylidenedioxy)cyclohex-1-enecarboxylic acid 18 as a crystalline solid. The solid was then dissolved in diethyl ether ($5 \mathrm{~cm}^{3}$), the solution was cooled to $0^{\circ} \mathrm{C}$, and a dilute ethereal solution of diazomethane was added. A fter stirring the mixture at $0^{\circ} \mathrm{C}$ for 15 min , the excess of diazomethane was destroyed by careful addition of glacial acetic acid, then the solution was evaporated under reduced pressure The residue was purified by flash chromatography on silica gel with light petroleum-diethyl ether ($1: 3$) as eluent to afford the methyl ester $19(20.2 \mathrm{mg}, 62 \%)$ as an oil, $[a]_{\mathrm{D}}+26.8$ (c $0.67, \mathrm{CHCl}_{3}$) \{lit., ${ }^{13}-33.0\left(\mathrm{c} 0.667, \mathrm{CHCl}_{3}\right.$) for the enantiomer; lit. ${ }^{14}[a]_{\mathrm{D}}-33.5$ for the enantiomer; lit., ${ }^{15}$ $[a]_{\mathrm{D}}-23.93$ (c 1.17 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) for the enantiomer \}; $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 3472$ (OH), 2991, 2933, 2953, 1714 ($\mathrm{C}=0$), 1652 ($\mathrm{C}=\mathrm{C}$), 1438, 1379, 1060 and 1033; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 1.37$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}$), 1.40 ($3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}$), 2.17 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.1, \mathrm{OH}$), 2.48 ($1 \mathrm{H}, \mathrm{ddt}, \mathrm{J} 16.7,9.0$ and 2.3, $\mathrm{CH} H \mathrm{C}=$), 2.63 (1 H , dd, J 16.7 and 4.3, $\mathrm{CHHC}=$), 3.76 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COM} \mathrm{e}$), 3.91-3.97($1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}$), $4.40(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.8$ and 2.7, CHOR), 4.70-4.3 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ OR) and $6.77(1 \mathrm{H}, \sim \mathrm{t}$, J $2.7, \mathrm{CH}=$); $\delta_{\mathrm{c}}(22.5 \mathrm{M} \mathrm{Hz}) 25.95(\mathrm{Me}), 27.36,27.77(2 \mathrm{C}, \mathrm{M} \mathrm{e}$, $\mathrm{CH}_{2} \mathrm{C}=$) , 52.06 (OMe), 66.92, $72.91,75.45$ ($3 \mathrm{C}, \mathrm{CHOH}$, $2 \times$ CHOR), $110.03\left(\mathrm{CMe}_{2}\right), 129.21\left(=\mathrm{CCO}_{2} \mathrm{Me}\right), 134.79$ ($\mathrm{CH}=\mathrm{C}$) and 166.74 (CO); m/z (EI) 213 ($\mathrm{M}^{+}-\mathrm{Me}$), 153, 139, $121,109,81$ and 59.

8-0 -(tert-B utyldiphenylsilyl)-1,2,3-trideox y-5,6-0 -isopropyl-idene- α, β-d-ribo-oct-1-en-4-ulofuranose 21

The lactone 20 ($1.61 \mathrm{~g}, 3.77 \mathrm{mmol}$) was dissolved in dry TH F ($100 \mathrm{~cm}^{3}$), the solution was cooled to $-78^{\circ} \mathrm{C}$ and allylmagnesium chloride (2.0 м in TH F ; $1.98 \mathrm{~cm}^{3}, 3.96 \mathrm{mmol}$) was added dropwise. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 3 h , quenched with saturated aq. ammonium chloride $\left(150 \mathrm{~cm}^{3}\right)$, and extracted with ethyl acetate $\left(3 \times 150 \mathrm{~cm}^{3}\right)$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to leave a residue, which was purified by flash column chromatography on silica gel with 11% diethyl ether in light petroleum as eluent to give the starting material $(0.13 \mathrm{~g}$, 8% recovery) and the lactol 21 ($1.42 \mathrm{~g}, 87 \%$ based on consumed starting material) as an oil, $[a]_{\mathrm{D}}-7.8$ (c $\left.1.22, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ film $) /$ $\mathrm{cm}^{-1} 3404$ (OH), 3073 ($\mathrm{C}=\mathrm{CH}_{2}$), 2934, 2859, 1643 (C=C), 1590, $1472,1428,1382,1211,1113$ and 1073; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz})(2: 5$ mixture of α and β anomers) $1.06\left(2.61 \mathrm{H}, \mathrm{s}\right.$, minor $\mathrm{CM} \mathrm{e}_{3}$), 1.08 ($6.39 \mathrm{H}, \mathrm{s}$, major $\mathrm{CM} \mathrm{e}_{3}$), $1.32(2.13 \mathrm{H}, \mathrm{s}$, major M e), 1.40 (0.87 H , s, minor Me e, 1.49 (2.13 H , s, major Me), 1.59 (0.87 H , s, minor Me), 2.46-2.67 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=$), 3.65 ($0.71 \mathrm{H}, \mathrm{dd}$, J
11.1 and 3.5, major CH H OSi), 3.78 (0.29 H , dd, J 11.3 and 3.3 , minor CHHOSi), 3.82 (0.71 H , dd, J 11.1 and 3.9 , major CHHOSi), 3.83 ($0.29 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.3$ and 3.4, minor CHHOSi), $3.98(0.29 \mathrm{H}, \mathrm{s}$, minor OH), $4.16(0.29 \mathrm{H}, \mathrm{q}, \mathrm{J} 3.7$, minor OCH $\left.\mathrm{CH}_{2} \mathrm{OSi}\right), 4.18(0.71 \mathrm{H}, \mathrm{s}$, major OH$), 4.21(0.71 \mathrm{H}, \mathrm{dt}, \mathrm{J} 1.5$ and 3.6, major $\mathrm{OCHCH}_{2} \mathrm{OSi}$), 4.48 ($0.29 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.2$, minor CH ORCO), 4.51 ($0.71 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.8$, major CH ORCO), 4.80 (0.71 H , dd, J 5.8 and 1.5 , major $\mathrm{CHORCHORCH}_{2} \mathrm{OSi}$), 4.83 (0.29 H , dd, J 7.2 and 4.1, minor CH ORCH ORCH $\mathrm{H}_{2} \mathrm{OSi}$), 5.12-5.23 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}$), $5.83-5.93\left(0.29 \mathrm{H}, \mathrm{m}\right.$, minor $\mathrm{CH}=\mathrm{CH}_{2}$), 6.01 ($0.71 \mathrm{H}, \mathrm{ddt}, \mathrm{J} 17.2,10.2$ and 7.1 , major $\mathrm{CH}=\mathrm{CH}_{2}$), $7.35-$ 7.47 ($6 \mathrm{H}, \mathrm{m}, \mathrm{m}$ - and $\mathrm{p}-\mathrm{H} \mathrm{Ph}$) and 7.63-7.90 ($4 \mathrm{H}, \mathrm{m}, \mathrm{o}-\mathrm{H} \mathrm{Ph}$) $\delta_{c}(22.5 \mathrm{M} \mathrm{Hz})$ (major, β anomer) 19.15 ($\mathrm{CM} \mathrm{e}_{3}$), $25.24(\mathrm{M} \mathrm{e})$, 26.91 ($4 \mathrm{C}, \mathrm{M} \mathrm{e}$,CM e 3), 39.83 ($\mathrm{CH}_{2} \mathrm{C}=$), 65.52 ($\mathrm{CH}_{2} \mathrm{OSi}$), 82.02, 86.13, 86.94 ($3 \mathrm{C}, 3 \times \mathrm{CHOR}$), 106.93 (anomeric C), 112.51 (CME_{2}), 118.48 ($\mathrm{CH}=\mathrm{CH}_{2}$), 127.96 ($4 \mathrm{C}, \mathrm{Ph}$), 130.05 (C, Ph), 130.20 (C, Ph), 132.14 (C, Ph), 132.20 (C, Ph), 132.92 $\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$ and $135.63(4 \mathrm{C}, \mathrm{Ph})$; (minor, α anomer) 19.27 ($\mathrm{CM} \mathrm{e}_{3}$), $25.00(\mathrm{Me}), 26.64\left(4 \mathrm{C}, \mathrm{Me} \mathrm{CM} \mathrm{e}_{3}\right), 43.65\left(\mathrm{CH}_{2} \mathrm{C}=\right.$), $63.52\left(\mathrm{CH}_{2} \mathrm{OSi}\right), 81.00,81.87,82.37(3 \mathrm{C}, 3 \times \mathrm{CHOR}), 102.57$ (anomeric C), $115.49\left(\mathrm{CM} \mathrm{e}_{2}\right), 118.74\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 127.75(4 \mathrm{C}$, Ph), 129.82 ($2 \mathrm{C}, \mathrm{Ph}$), $132.74\left(\mathrm{CH}=\mathrm{CH}_{2}\right.$), 133.12 (C, Ph), 133.27 (C, Ph) and 135.75 (4 C, Ph) (Found: C, 69.13; H, 7.80. $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{Si}$ requires $\mathrm{C}, 69.20 ; \mathrm{H}, 7.74 \%$).

8-0-(tert-Butyldipheny|silyl)-1,2,3-trideoxy-5,6-0-isopropyl-idene-d-altro-oct-1-enitol 22

The lactol 21 ($2.88 \mathrm{~g}, 6.15 \mathrm{mmol}$) was dissolved in dry toluene $\left(100 \mathrm{~cm}^{3}\right)$, and the solution was cooled to $-78^{\circ} \mathrm{C}$. DIBAL (1.5 m in toluene; $41 \mathrm{~cm}^{3}, 61.5 \mathrm{mmol}$) was added dropwise and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 3 h . The reaction was quenched by careful addition of aq. hydrochloric acid $\left(2 \mathrm{~m} ; 150 \mathrm{~cm}^{3}\right)$, and extracted with ethyl acetate ($3 \times 200 \mathrm{~cm}^{3}$). The extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated under reduced pressure to leave a residue, which was purified on silica gel with 25% diethyl ether in light petroleum as eluent to give the recovered starting material ($0.76 \mathrm{~g}, 26 \%$ recovery) and the diol 22 ($1.87 \mathrm{~g}, 88 \%$ based on consumed starting material) as an oil, $[a]_{\mathrm{D}}-4.6\left(\mathrm{c} 1.41, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3441(\mathrm{OH})$, 3072 ($\mathrm{C}=\mathrm{CH}_{2}$) , 3050, 2983, 2932, 2858, 1642 ($\mathrm{C}=\mathrm{C}$), 1590, 1472, 1428, 1381, 1215, 1113 and 1062; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 1.07$ (9 $\mathrm{H}, \mathrm{s}, \mathrm{CM} \mathrm{e}_{3}$), 1.32 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 1.37 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 2.36$2.41\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\right), 2.48(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.7, \mathrm{OH}), 2.89(1 \mathrm{H}$, d, J 4.5, OH), 3.77 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.3$ and 5.2, CH HOSi), 3.88 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.3$ and $2.4, \mathrm{CHHOSi}$), $4.06-4.13(4 \mathrm{H}, \mathrm{m}$, $2 \times \mathrm{CHOR}, 2 \times \mathrm{CHOH}), 5.09-5.17\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.89$ ($1 \mathrm{H}, \mathrm{ddt}, \mathrm{J} 17.2,10.1$ and $7.1, \mathrm{CH}=\mathrm{CH}_{2}$), 7.36-7.46 ($6 \mathrm{H}, \mathrm{m}$, m - and p-H Ph) and $7.65-7.69(4 \mathrm{H}, \mathrm{m}, \mathrm{o}-\mathrm{H} \mathrm{Ph}) ; \delta_{\mathrm{c}}(22.5$ M Hz) $19.21\left(\mathrm{CM} \mathrm{e}_{3}\right), 24.88(\mathrm{M} \mathrm{e}), 26.82\left(3 \mathrm{C}, \mathrm{CM} \mathrm{e}_{3}\right), 27.09$ (Me), $39.44\left(\mathrm{CH}_{2} \mathrm{C}=\right), 65.43\left(\mathrm{CH}_{2} \mathrm{OSi}\right), 68.20,69.46,76.41$, 78.71 ($4 \mathrm{C}, 2 \times \mathrm{CHOR}, 2 \times \mathrm{CHOH}$), $108.06\left(\mathrm{CMe}_{2}\right), 117.31$ $\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 127.72(4 \mathrm{C}, \mathrm{Ph}), 129.78(2 \mathrm{C}, \mathrm{Ph}), 132.92(\mathrm{C}$, $\mathrm{Ph}), 132.98(\mathrm{C}, \mathrm{Ph}), 134.94\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$ and $135.51(4 \mathrm{C}, \mathrm{Ph})$ (Found: C, 68.64; H, 8.30. $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{Si}$ requires $\mathrm{C}, 68.90 ; \mathrm{H}$, 8.14\%).

1,2,3-T rideoxy-5,6-0 -isopropylidene-D-altro-oct-1-enitol 5

The diol 22 ($608.8 \mathrm{mg}, 1.29 \mathrm{mmol}$) was dissolved in dry TH F $\left(50 \mathrm{~cm}^{3}\right)$ and tetrabutylammonium fluoride (TBAF) (1.0 m in THF ; $3.23 \mathrm{~cm}^{3}, 3.23 \mathrm{mmol}$) was added. The solution was stirred at room temperature for 10 h , and then was evaporated under reduced pressure to leave a residue, which was partitioned between water ($100 \mathrm{~cm}^{3}$) and ethyl acetate ($3 \times 100 \mathrm{~cm}^{3}$). The organic layers were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue on silica gel with diethyl ether as eluent afforded the title compound $\mathbf{5}(214.4 \mathrm{mg}, 72 \%)$ as an oil, $[a]_{\mathrm{D}}+9.6$ (c 1.66, CHCl_{3}); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3384(\mathrm{OH})$, 3077 ($\mathrm{C}=\mathrm{CH}_{2}$), 2984, 2936, 1642 ($\mathrm{C}=\mathrm{C}$), 1434, 1382, 1244, 1217, 1166 and 1062; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 1.33(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}), 1.45(3 \mathrm{H}, \mathrm{s}$, Me), 2.36-2.48 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=, \mathrm{OH}$), $2.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.1$,
$\mathrm{OH}), 3.60-3.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.0, \mathrm{OH})$, $3.95-4.00(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 3.97$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.0, \mathrm{CHOR}$), 4.04$4.10(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 4.11(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.5$ and $2.0, \mathrm{CHOR})$, 5.10-5.18 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}$) and $5.84(1 \mathrm{H}, \mathrm{ddt}, \mathrm{J} 17.2,10.1$ and 7.1, $\mathrm{CH}=\mathrm{CH}_{2}$); $\delta_{\mathrm{c}}(22.5 \mathrm{M} \mathrm{Hz}) 25.12(\mathrm{M} \mathrm{e}), 27.38(\mathrm{M} \mathrm{e}), 39.74$ ($\mathrm{CH}_{2} \mathrm{CH}=$), $64.44\left(\mathrm{CH}_{2} \mathrm{OH}\right), 68.17,69.63,77.00,78.22(4 \mathrm{C}$, $2 \times \mathrm{CHOH}, 2 \times \mathrm{CHOR}), 108.18\left(\mathrm{CM} \mathrm{e}_{2}\right), 117.84\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$ and $134.58\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$ (Found: $\mathrm{C}, 56.56 ; \mathrm{H}, 8.69 . \mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{5}$ requires $\mathrm{C}, 56.88 ; \mathrm{H}, 8.68 \%)$.

5,6,7-T rideoxy-2,3-0-isopropylidene- $\alpha, \beta-\mathrm{D}$-lyxo-6-enofuranose 7
The triol $5(1.00 \mathrm{~g}, 4.31 \mathrm{mmol})$ was dissolved in water ($25 \mathrm{~cm}^{3}$) and sodium periodate ($1.20 \mathrm{~g}, 5.6 \mathrm{mmol}$) was added. The solution was stirred at room temperature for 2 h , and extracted with ethyl acetate $\left(3 \times 80 \mathrm{~cm}^{3}\right)$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel with 25% diethyl ether in light petroleum as eluent to give the hemiacetal 7 ($794.5 \mathrm{mg}, 92 \%$) as an oil, $[a]_{\mathrm{D}}+15.9$ (c 1.48, CHCl_{3}); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3420(\mathrm{OH}), 3079\left(\mathrm{C}=\mathrm{CH}_{2}\right), 2983,2940,1643$ ($\mathrm{C}=\mathrm{C}$) , 1434, 1375, 1210, 1164, 1063 and 1013; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}$) (mixture of anomers, $\alpha: \beta=7.5: 1$) 1.31 ($2.64 \mathrm{H}, \mathrm{s}$, major Me), 1.36 ($0.36 \mathrm{H}, \mathrm{s}$, minor M e), 1.46 (2.64 H , s, major Me), $1.53(0.36 \mathrm{H}, \mathrm{s}$, minor Me$)$, 2.45-2.49 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=$), 2.58 ($0.88 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4$, major OH), 3.51 ($0.12 \mathrm{H}, \mathrm{dt}$, J 3.2 and 7.0, minor OCHCH_{2}), 3.86 ($0.12 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.2$, minor OH), $4.18\left(0.88 \mathrm{H}, \mathrm{dt}\right.$, J 3.6 and 7.0 , major OCHCH_{2}), $4.48(0.12$ H , dd, J 6.0 and 3.5 , minor CHORCHOH), $4.589(0.12 \mathrm{H}$, dd, J 6.0 and 3.2, minor $\mathrm{CHORHCH}_{2}$), $4.593(0.88 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 5.9, major CHORCHOH), 4.67 (0.88 H , dd, J 5.9 and 3.6 , major CHORCHCH 2$), 4.94(0.12 \mathrm{H}$, dd, J 12.2 and 3.5 , minor OCHOH), 5.06-5.20 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}$), $5.35(0.88 \mathrm{H}$, d, J 2.4, major OCHOH), 5.80-5.89 (0.12 H, m, minor $\mathrm{CH}=\mathrm{CH}_{2}$) and $5.87(0.88 \mathrm{H}, \mathrm{ddt}, \mathrm{J}$ 17.1, 10.2 and 6.9, major $\mathrm{CH}=\mathrm{CH}_{2}$); $\delta_{\mathrm{c}}(22.5 \mathrm{M} \mathrm{Hz}$) (major, α anomer) $24.79(\mathrm{Me})$, 25.92 (Me), $32.79\left(\mathrm{CH}_{2} \mathrm{C}=\right), 79.48,80.10,85.53$ (3 C, $3 \times \mathrm{CHOR}), \quad 100.66(\mathrm{OCHOH}), 112.27\left(\mathrm{CM} \mathrm{e}_{2}\right), 117.04$ $\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$ and $134.19\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$; (minor, β anomer) 24.79 (Me), $25.65\left(\mathrm{Me}\right.$), $32.49\left(\mathrm{CH}_{2} \mathrm{C}=\right), 75.39,78.61,79.89(3 \mathrm{C}$, $3 \times \mathrm{CHOR}), \quad 96.51$ (OCHOH), $\quad 112.89\left(\mathrm{CMe}_{2}\right), \quad 117.31$ $\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$ and $133.81\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$ (Found: $\mathrm{C}, 59.63 ; \mathrm{H}, 8.13$. $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{4}$ requires $\mathrm{C}, 59.98 ; \mathrm{H}, 8.05 \%$).

(3aS,5R ,6S,7R ,7aS)-0 ctahydro-5-hydrox y-6,7-isopropylidene-dioxy-1-methyl-2,1-benzisoxazole 11

The hemiacetal 7 ($591.3 \mathrm{mg}, 2.95 \mathrm{mmol}$) and N -methylhydroxylamine hydrochloride ($2.47 \mathrm{~g}, 29.5 \mathrm{mmol}$) were dissolved in dry pyridine ($25 \mathrm{~cm}^{3}$), and the solution was stirred at room temperature for 20 h , after which the pyridine was evaporated off and the residue was co-evaporated with toluene under reduced pressure. The residue was partitioned between water ($100 \mathrm{~cm}^{3}$) and ethyl acetate ($3 \times 120 \mathrm{~cm}^{3}$). The combined organic extracts were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated under reduced pressure. The residue was passed through a short column of silica gel with light petroleum-diethyl ether (1:2) as eluent to give the nitrone 9 ($676.3 \mathrm{mg}, 100 \%$) as a crystalline solid, which was then dissolved in dry toluene ($100 \mathrm{~cm}^{3}$) and the solution was refluxed for 18 h . The toluene was removed under reduced pressure and the residue was purified by flash chromatography on silica gel with diethyl ether as eluent to afford the isoxazolidine 11 ($640.3 \mathrm{mg}, 95 \%$) as an oil, $[a]_{\mathrm{D}}-115.6$ (c 1.45 , $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3419$ (OH), 2987, 2936, 2879, 1457, $1380,1244,1214,1164,1058$ and $1012 ; \delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 1.33(3 \mathrm{H}$, s, Me), 1.45 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 1.58 (1 H , ddd, J 14.2, 6.5 and 3.6 , $\mathrm{CHHCHOH}), 2.00(1 \mathrm{H}$, ddd, 」 14.2, 7.7 and $2.9, \mathrm{CHH}-$ $\mathrm{CHOH}), 2.73(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 2.87-2.94(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}$, $\mathrm{CHCH}_{2} \mathrm{ON}$), 3.73 (2 H , dd, J 8.1 and 4.2, $\mathrm{CH}_{2} \mathrm{ON}$), 4.17-4.23 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH} O \mathrm{H}, \mathrm{CH} O R$), $4.29(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.2$ and $2.3, \mathrm{CHOR}$) and $4.34(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{c}}(22.5 \mathrm{M} \mathrm{Hz}) 24.10(\mathrm{M} \mathrm{e}), 26.73(\mathrm{M} \mathrm{e})$, $29.47\left(\mathrm{CH}_{2} \mathrm{CHOH}\right), 37.71\left(\mathrm{CHCH}_{2}\right), 43.65(\mathrm{NMe}), 67.90$,
$68.68,72.35,72.88,77.75$ ($5 \mathrm{C}, \mathrm{CHN}, \mathrm{CHOH}, \mathrm{CH}_{2} \mathrm{ON}$ $2 \times \mathrm{CHOR}$) and $107.94\left(\mathrm{CME}_{2}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 229\left(\mathrm{M}^{+}\right), 214$ ($\mathrm{M}^{+}-\mathrm{Me}$), 128, 98, 84 and $70 ; \mathrm{m} / \mathrm{z}\left(\mathrm{Cl}, \mathrm{NH}_{3}\right) 230\left(\mathrm{M}^{+}+\mathrm{H}\right)$ (Found: M ${ }^{+}, 229.1314 ; \mathrm{C}, 57.34 ; \mathrm{H}, 8.30 ; \mathrm{N}, 6.01 \% . \mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N} \mathrm{O}_{4}$ requires $\mathrm{m} / \mathrm{z} 229.1314 ; \mathrm{C}, 57.63 ; \mathrm{H}, 8.35 ; \mathrm{N}, 6.11 \%)$.

(3aS,5R ,6S,7R ,7aS)-5-A cetox yoctahydro-6,7-isopropylidene-dioxy-1-methyl-2,1-benzisoxazole 13

To a solution of the isoxazolidine 11 ($144.5 \mathrm{mg}, 0.63 \mathrm{mmol}$) and D M A P ($20 \mathrm{mg}, 0.16 \mathrm{mmol}$) in dry pyridine ($10 \mathrm{~cm}^{3}$) was added acetic anhydride ($0.24 \mathrm{~cm}^{3}, 2.52 \mathrm{mmol}$). A fter stirring the mixture for 10 h , the pyridine was evaporated off and the residue was co-evaporated with toluene under reduced pressure to leave a residue, which was purified by flash chromatography on silica gel with light petroleum-diethyl ether ($2: 5$) as eluent to afford the title compound 13 ($166 \mathrm{mg}, 93 \%$) with data as reported above
[(1S , 2R , 3S ,4R ,6S)-4-A cetoxy-6-hydroxymethyl-2,3-(isopropylidenedioxy)cyclohex yl]trimethylammonium iodide 24
The isoxazolidine 13 ($178.7 \mathrm{mg}, 0.66 \mathrm{mmol}$) as a solution in dry methanol ($100 \mathrm{~cm}^{3}$) was hydrogenated (2 atm) over Pearlman's catalyst $\left[20 \% \mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}\right]$ at room temperature for two days. The mixture was filtered through Celite, and the filtrate was evaporated under reduced pressure to leave the crude (1S, $2 S, 3 R, 4 S, 5 R$)-5-acetoxy-3,4-isopropylidenedioxy-2-(methyl-amino)cyclohexane-1-methanol 23 (180 mg) as a solid, $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3418$ (NH, OH), 2986, 2937, 1735 ($\mathrm{C}=0$), 1460, 1375,1242 and $1040 ; \delta_{\mathrm{H}}(90 \mathrm{M} \mathrm{Hz}) 1.37(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}), 1.49(3 \mathrm{H}, \mathrm{s}$, M e), $1.60-2.00\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}\right.$ OAc), 2.07 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COM} \mathrm{e}$), 2.00-3.00 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CHNH}, \mathrm{CHCH}_{2} \mathrm{OH}$), $2.53(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 3.60-3.95 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}$), 4.05-4.60 ($2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CHOR}$) and 4.80-5.15 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHOAc}$).

This crude amino alcohol $\mathbf{2 3}$ was then dissolved in dry TH F ($20 \mathrm{~cm}^{3}$), to which potassium carbonate ($274 \mathrm{mg}, 1.98 \mathrm{mmol}$) and iodomethane ($2 \mathrm{~cm}^{3}, 32 \mathrm{mmol}$) were added. The reaction mixture was stirred at room temperature for 30 h , after which the solvent was removed by evaporation under reduced pressure, and the residue was taken up in chloroform ($50 \mathrm{~cm}^{3}$) and filtered through Celite. The filtrate was evaporated under reduced pressure to give a residue, which was then partitioned between water ($50 \mathrm{~cm}^{3}$) and diethyl ether ($3 \times 50 \mathrm{ml}$). The aqueous layer was freeze-dried to afford the title compound 24 (226.7 mg , 80%) as fine crystals, $m p 100-110^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}+12.2$ (c 1.31, water); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3381$ (OH), 3056, 2939, 2985, 1734 ($\mathrm{C}=0$) , 1375, 1242 and 1048; $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 1.41(3 \mathrm{H}$, s, Me), 1.57 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 1.83 ($1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 15.2$ and 3.8 , CH H CHOAc), 2.07 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COM}$ e), $2.27(1 \mathrm{H}, \mathrm{dt}$, J 15.2 and 5.8 , CHHCHOAc), $2.80-2.85\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{OH}\right), 3.41(9 \mathrm{H}, \mathrm{s}$, N M e ${ }_{3}$), 3.68 ($1 \mathrm{H}, \mathrm{dd}$, J 11.9 and 3.6, CH HOH), 3.81-3.95 (2 $\mathrm{H}, \mathrm{m}, \mathrm{CHHOH}, \mathrm{CHNMe} 3$), 4.39-4.43 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHOR}$) and 5.05-5.17 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ OR , CH OA C); m/z (FAB) $302\left(\mathrm{M}^{+}-\mathrm{I}\right)$, 270, 258, 242, 143 and 125 [Found (FAB): $\mathrm{M}^{+}-\mathrm{I}, 302.1969$. $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{NO}_{5}$ requires $\mathrm{m} / \mathrm{z} 302.1967$].

(3R ,4S,5R)-5-A cetoxy-3,4-(isopropylidenedioxy)cyclohex-1enecarbaldehyde 25

DM SO ($0.16 \mathrm{ml}, 2.29 \mathrm{mmol}$) was added to a solution of oxalyl dichloride ($0.1 \mathrm{ml}, 1.15 \mathrm{mmol}$) in dry dichloromethane ($10 \mathrm{~cm}^{3}$) at $-78^{\circ} \mathrm{C}$. A fter 15 min , a solution of the quaternary ammonium iodide 24 ($168 \mathrm{mg}, 0.39 \mathrm{mmol}$) in dichloromethane ($2 \mathrm{~cm}^{3}$) was added, and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 55 min. Triethylamine ($0.81 \mathrm{~cm}^{3}, 5.75 \mathrm{mmol}$) was then added; after a further 10 min the mixture was allowed to come to room temperature, diluted with dichloromethane ($100 \mathrm{~cm}^{3}$) and washed with water ($100 \mathrm{~cm}^{3}$). The aqueous layer was extracted with dichloromethane ($2 \times 100 \mathrm{~cm}^{3}$), and the combined organic extracts were washed with saturated aq. sodium chloride (200 cm^{3}), dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated under reduced pressure. Flash chromatography of the residue on silica gel with light
petroleum-diethyl ether ($1: 1$) as eluent afforded the a, β unsaturated aldehyde 25 ($66.5 \mathrm{mg}, 71 \%$) as an oil, $[a]_{\mathrm{D}}-84.1$ (c $1.38, \mathrm{CHCl}_{3}$); $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2987,2936,2828,1748$ (ester $\mathrm{C}=0$), $1691(\mathrm{CH}=0), 1652(\mathrm{C}=\mathrm{C}), 1372,1237,1160,1063$ and 1041; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 1.39$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}$), 1.40 ($3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}$), 2.04 (3 H, s, COM e), 2.31 ($1 \mathrm{H}, \mathrm{ddt}, \mathrm{J} 17.7,6.0$ and 1.4, CH H C=), 2.65 ($1 \mathrm{H}, \mathrm{ddt}, \mathrm{J} 17.7,4.5$ and $1.4, \mathrm{CHHC}=$), $4.30(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.0$, CH ORCHOAC), 4.83 ($1 \mathrm{H}, \mathrm{dd}$, J 5.8 and 3.4, CH ORCH $=$), 5.20 ($1 \mathrm{H}, \mathrm{dt}$, J 4.5 and $6.0, \mathrm{CHOAc}$), 6.70 ($1 \mathrm{H}, \mathrm{dt}$, J 3.4 and 1.4 , $\mathrm{CH}=\mathrm{C})$ and $9.54(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$; $\delta_{\mathrm{c}}(22.5 \mathrm{M} \mathrm{Hz}) 21.00$ (COM e), $23.33(\mathrm{Me}), 25.92(\mathrm{M} \mathrm{e}), 27.74\left(\mathrm{CH}_{2} \mathrm{C}=\right), 69.21,71.69,74.38$ (3 C, $2 \times$ CHOR, CHOAc), $110.30\left(\mathrm{CM} \mathrm{e}_{2}\right), 138.76$ (=CCHO), 143.32 ($\mathrm{CH}=\mathrm{C}$) , 170.00 (COM e) and 192.76 (CHO); m/z (EI) $241\left(\mathrm{M}^{+}+\mathrm{H}\right), 225\left(\mathrm{M}^{+}-\mathrm{Me}\right), 183,123$ and $95 ; \mathrm{m} / \mathrm{z}\left(\mathrm{Cl}, \mathrm{NH}_{3}\right)$ $258\left(\mathrm{M}^{+}+\mathrm{NH}_{4}\right), 241\left(\mathrm{M}^{+}+\mathrm{H}\right), 225\left(\mathrm{M}^{+}-\mathrm{Me}\right)$ and 183 [Found ($\mathrm{Cl}, \mathrm{NH}_{3}$): MH^{+}, 241.1076. $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{5}$ requires m / z 241.1076].

(3R ,4S,5R)-5-A cetoxy-3,4-(isopropylidenedioxy)cyclohex-1enecarboxylic acid 26

To a solution of the aldehyde $25(21.8 \mathrm{mg}, 0.091 \mathrm{mmol})$, monobasic sodium phosphate monohydrate ($20 \mathrm{mg}, 0.14 \mathrm{mmol}$) and hydrogen peroxide (30% aq. solution, $\sim 0.98 \mathrm{~m} ; 0.05 \mathrm{~cm}^{3}, 0.49$ mmol) in acetonitrile-water ($2: 1 ; 3 \mathrm{~cm}^{3}$) at room temperature was added sodium chlorite (80% purity from Aldrich; 40 mg , $0.35 \mathrm{mmol})$. A fter 2 h the mixture was diluted with saturated aq. sodium chloride ($25 \mathrm{~cm}^{3}$) and extracted with diethyl ether $\left(3 \times 50 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Purification was effected by flash chromatography on silica gel with 0.1% acetic acid in light petroleum-diethyl ether ($1: 4$) as eluent to yield the acid 26 ($21.2 \mathrm{mg}, 91 \%$) as an oil, $[a]_{\mathrm{D}}-76.4$ (c $0.71, \mathrm{CHCl}_{3}$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2990,2936,1732$ (ester $\mathrm{C}=0$), 1699 (acid $\mathrm{C}=0), 1653(\mathrm{C}=\mathrm{C}), 1374$ and 1239; $\delta_{\mathrm{H}}(90 \mathrm{MHz}) 1.39(6 \mathrm{H}, \mathrm{s}$, $2 \times \mathrm{Me}$), $2.06(3 \mathrm{H}, \mathrm{s}, \mathrm{COM} \mathrm{e}), 2.10-2.90\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\right)$, 4.23 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.2, \mathrm{CHOR}$), 4.69-4.79 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHOR}$), 5.09-5.28 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHOAc}$), 6.98-7.03 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{C}$) and $8.60\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CO}_{2} \mathrm{H}\right.$); $\delta_{\mathrm{c}}(22.5 \mathrm{M} \mathrm{Hz}) 21.06$ (COM e), 25.95 ($2 \mathrm{C}, \mathrm{CM} \mathrm{e}_{2}$), $27.74\left(\mathrm{CH}_{2} \mathrm{C}=\right), 69.69,71.78,73.78$ (3 C , $2 \times$ CHOR, CHOAC), $110.15\left(\mathrm{CM} \mathrm{e}_{2}\right), 128.82\left(=\mathrm{CCO}_{2} \mathrm{H}\right)$, $136.58(\mathrm{CH}=\mathrm{C}), 170.20(\mathrm{COM} \mathrm{e})$ and $170.89\left(\mathrm{CO}_{2} \mathrm{H}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{EI})$ $241\left(\mathrm{M}^{+}-\mathrm{Me}\right), 205,139,95$ and $84 ; \mathrm{m} / \mathrm{z}\left(\mathrm{Cl}, \mathrm{NH}_{3}\right) 274$ $\left(\mathrm{M}^{+}+\mathrm{NH}_{4}\right), 257\left(\mathrm{M}^{+}+\mathrm{H}\right), 241\left(\mathrm{M}^{+}-\mathrm{Me}\right), 216$ and 199 $\left(\mathrm{M}^{+}-\mathrm{Me}-\mathrm{C}_{3} \mathrm{H}_{6}\right.$) [Found (CI, NH_{3}): MH^{+}, \quad 257.1025. $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{6}$ requires m / z 257.1025].

(3R ,4S,5R)-3,4,5-Trihydrox ycyclohex-1-enecarboxylic acid (shikimic acid) 1

A solution of acid 26 ($40 \mathrm{mg}, 0.16 \mathrm{mmol}$) and potassium carbonate ($251 \mathrm{mg}, 1.6 \mathrm{mmol}$) in 5% aq. methanol ($10 \mathrm{~cm}^{3}$) was stirred at room temperature for 12 h , then was acidified with aq. hydrochloric acid (2 m) and extracted with diethyl ether (3×50 $\left.\mathrm{cm}^{3}\right)$. The combined organic extracts were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and evaporated to give the crude ($3 \mathrm{R}, 4 \mathrm{~S}, 5 \mathrm{R}$)-5-hydroxy-3,4-(isopropylidenedioxy)cyclohex-1-enecarboxylic acid 27 as an oil, which was then dissolved in 50% aq. TFA ($2 \mathrm{~cm}^{3}$), and the solution was stirred at room temperature for 10 h . Concentration of the reaction mixture and further co-evaporation with dry ethanol under reduced pressure furnished the shikimic acid $1(21.5 \mathrm{mg}, 79 \%)$ as a crystalline solid, $\mathrm{mp} 183-185^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}$ -175.4 (c 0.59, water) \{lit., ${ }^{5 \mathrm{a}} \mathrm{mp} 189^{\circ} \mathrm{C}$; [a] $]_{\mathrm{D}}-179.7$ (c 4, water); lit., ${ }^{\text {se }} \mathrm{mp} 184-186^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}-170$ (c 0.86 , water)\}, identical with an authentic sample of shikimic acid.

A cknowledgements

We thank the EPSRC for access to central facilities for mass spectrometry at the University of Wales, Swansea (Director, Dr J. A. Ballantine), and for X-ray crystallographic data collec-
tion at the U niversity of Wales, Cardiff (Director, Professor M.B. H ursthouse).

R eferences

1 E. Haslam, Shikimic Acid: M etabolism and M etabolites, Wiley, Chichester, UK, 1993
2 B. D. D avis, A dv. Enzymol., 1955, 16, 287.
3 D. B. Sprinson, A dv. C arbohydr. Chem., 1961, 15, 235.
4 F. Gibson and J. Pittard, B acteriol. Rev., 1968, 32, 468.
5 (a) H. J. Bestmann and H. A. H eid, A ngew. Chem., Int. Ed. Engl., 1971, 10, 336; (b) M. Yoshikawa, Y. Ikeda, H. K ayakiri and I. K itagawa, H eterocycles, 1982, 17, 209; (c) K. Tadano, Y. U eno, Y. Iimura and T. Suami, J. Carbohydr. Chem., 1987, 6, 245; (d) K. Tadano, H. M aeda, M. H oshino, Y. I imura and T. Suami, J. Org. Chem., 1987, 52, 1946; (e) G. W. J. Fleet, T. K. M. Shing and S. M. Warr, J. Chem. Soc., Perkin Trans. 1, 1984, 905; (f) S. M irza and A. Vasella, H elv. Chim. A cta, 1984, 67, 1562; (g) S. M irza and J. H arvey, Tetrahedron L ett., 1991, 32, 4111.

6 Preliminary communication of part of this work: S. Jiang, B. M ekki, G. Singh and R. H. Wightman, Tetrahedron Lett., 1994 35, 5505.
7 J. G. Buchanan, V. B. Jigajinni, G. Singh and R. H. Wightman, J. Chem. Soc., Perkin Trans. 1, 1987, 2377.

8 B. M ekki, G. Singh and R. H. Wightman, Tetrahedron Lett., 1991, 32, 5143.
9 A. S. Perlin, N. Cyr, H. J. K och and B. K orsch, A nn. N.Y. A cad. Sci., 1973, 222, 935; R. G. S. R itchie, N. Cyr, B. K orsch, H. J. K och and A. S. Perlin, C an. J. Chem., 1975, 53, 1424.

10 W. M. PearIman, Tetrahedron Lett., 1967, 1663; P. DeShong, C. M . D icken, J. M . Leginus and R . R . Whittle, J. A m. C hem. Soc., 1984, 106, 5598.

11 A. J. M ancuso, S. L. H uang and D. Swern, J. Org. Chem., 1978, 43, 2480; K. Omura and D. Swern, Tetrahedron, 1978, 34, 1651; for a review, see: A. J. M ancuso and D. Swern, Synthesis, 1981, 165.
12 E. D alcanale and F. M ontanari, J. Org. Chem., 1986, 51, 567.
13 T. Takahashi, A. Iyobe, Y. A rai and T. K oizumi, Synthesis, 1989, 189.

14 S. H anessian, P. Beaulieu and D. D ube, Tetrahedron L ett., 1986, 27, 5071.

15 T. K. M . Shing and Y. Tang, Tetrahedron, 1991, 47, 4571.
16 M. M. Campbell, A. D. K aye, M. Sainsbury and R . Yavarzadeh, Tetrahedron, 1984, 40, 2461.
17 J. A. Piccirilli, T. K rausch, L. J. M acPherson and S. A. Benner, H elv. C him. Acta, 1991, 74, 397. These workers quoted a mp of $68^{\circ} \mathrm{C}$ for compound 20; we found that the mp of compound 20 is $97-99^{\circ} \mathrm{C}$ and a mp of $68^{\circ} \mathrm{C}$ for the analogous tert-butyldimethylsilyl compound, see: J. C. Cheng, V. H acksell and G. D. Daves, J r., J. Org. Chem., 1985, 50, 2778.

18 J. F. Witte, R. F rith and R. W. M cClard, C arbohydr. L ett., 1994, 1, 123; L. H ough, J. K. N. Jones and D. L. M itchell, Can. J. Chem., 1958, 36, 1720.
19 M. B. H ursthouse, A. I. K araulov, M. Ciechanowicz-Rutkowska, A. K olasa and W. Zankowska-J asinka, A cta C rystallogr., Sect. C, 1992, 48, 1257.
20 G. M. Sheldrick, SH ELX S-86, A cta C rystallogr., Sect. A, 1990, 46, 467.

21 G. M. Sheldrick, SHELXTL/PC (Ver. 5.03), Siemens A nalytical X -ray Instruments Inc., M adison, WI, U SA .

Paper 7/00389G
R eceived 16th J anuary 1997 A ccepted 12th M arch 1997

[^0]: \dagger The α, β-nomenclature used here is that appropriate to carbohydrate derivatives; compound $\mathbf{6}$ is an L-sugar derivative, whilst epimer $\mathbf{7}$ is of the d-series.

